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a b s t r a c t

Augmented Reality (AR), as a novel data visualization tool, is advantageous in revealing spatial
data patterns and data-context associations. Accordingly, recent research has identified AR data
visualization as a promising approach to increasing decision-making efficiency and effectiveness. As a
result, AR has been applied in various decision support systems to enhance knowledge conveying
and comprehension, in which the different data-reality associations have been constructed to aid
decision-making.

However, how these AR visualization strategies can enhance different decision support datasets
has not been reviewed thoroughly. Especially given the rise of big data in the modern world, this
support is critical to decision-making in the coming years. Using AR to embed the decision support
data and explanation data into the end user’s physical surroundings and focal contexts avoids isolating
the human decision-maker from the relevant data. Integrating the decision-maker’s contexts and the
DSS support in AR is a difficult challenge. This paper outlines the current state of the art through a
literature review in allowing AR data visualization to support decision-making.

To facilitate the publication classification and analysis, the paper proposes one taxonomy to classify
different AR data visualization based on the semantic associations between the AR data and physical
context. Based on this taxonomy and a decision support system taxonomy, 37 publications have been
classified and analyzed from multiple aspects. One of the contributions of this literature review is a
resulting AR visualization taxonomy that can be applied to decision support systems. Along with this
novel tool, the paper discusses the current state of the art in this field and indicates possible future
challenges and directions that AR data visualization will bring to support decision-making.

© 2024 The Authors. Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity
Press Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
r

1. Introduction

Decision support system (DSS), commonly defined as the
omputer-based system used for assisting decision making (Fin-
ay, 1994), has revolutionized decision making. With the advent
f big data, DSS systems have been at the heart of many indus-
ries from the service industry, to politics, in mining to finance
nd even military decisions. In general their use, bar occasion
uch publicized mistakes, have led to improved decision effi-
iency and accuracy under numerous scenarios. As an important
rea of the information systems (IS) discipline (Arnott and Per-
an, 2005), DSS mainly relies on data analysis and visualization
o aid in decision-makers actions. However, under nowadays
apid growth in the data volume and generation speed, decision-
akers could easily feel overloaded while simultaneously feeling
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the lack of related information for decisions at hand (Zhu and
Chen, 2008). Accordingly in the age of Big Data, DSS designers
have been exploring how to appropriately filter useful informa-
tion from copious datasets and visualize the decision-support
results intuitively to be well perceived with reduced cognitive
load.

Augmented Reality (AR) was given the interpretation of ‘‘in-
creased perception of reality’’ (Mekni and Lemieux, 2014) which
is achieved by the provision of real-time interactions with the
coexisting real and virtual. Accordingly, AR techniques have been
widely applied for data visualization, showing several common
advantages including hands-free interactions, instant data su-
perimposition, spatially mapped AR data for bi-augmentations
between physical and virtual spaces (Lee et al., 2008), context-
aware data visualization in relevant location or situated visu-
alized in relevant time. By constructing semantic and spatial
associations between physical context and AR data (data-reality
elationships), and allowing for intuitive tangible interaction and

ctionable insights for the relevant data (Olshannikova et al.,
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015), AR data visualization tools reduce decision-maker’s men-
ally effort, decision time, and required domain knowledge
Guarese et al., 2020b).

However, despite the increasing interest in applying AR data
isualization for decision support, very few literature reviews
ave provided a deep dive into this area with clear future guide-
ines. Therefore, we conducted this literature review to explore
ow AR data visualization has been applied for decision support.
oreover, to explore how different data-reality relationships be-

tween the AR datasets and the decision-making contexts have
affected the decision accuracy and efficiency, a novel taxonomy
is proposed to classify the common AR data visualization strate-
gies according to the semantic data-reality relationships involved
in these approaches. Based on this AR data visualization tax-
onomy and Alter’s DSS taxonomy (Alter, 1977), the collected
literature was classified into multiple types of AR-based DSS and
are then analyzed from multiple aspects, including their AR data
visualization approaches, DSS categories, AR input to DSS, AR
decision support data localization approaches, application areas,
and overall development tendencies. By comparing these met-
rics of different AR-based DSS categories, deep insights can be
gleaned from this literature review to show how different AR data
visualization strategies have been applied to confront different
decision-making challenges in various areas. According to the
key findings from this analysis, specific research gaps become
clear, and thus current challenges can be identified to indicate the
future directions for this field. Therefore, this paper has made the
following contributions:

• proposing an AR data visualization taxonomy based on the
semantic data-reality relationships.

• connecting the proposed AR data visualization taxonomy
and Alter’s decision support system taxonomy to analyze 59
AR-based decision support systems collected from published
literature.

• identifying the current challenges and future research direc-
tions based on the literature analysis.

This paper firstly introduces the background and methodology of
this literature review in Section 2. Then proposes a novel AR data
visualization taxonomy in Section 3 as the basis of the literature
analysis. Next, Section 4 classifies the collected literature based
on this AR data visualization taxonomy and one DSS taxonomy
with a general discussion for each type of AR-based DSS. Section 5
analyzes the development of each type of AR-based DSS and
teases out several key findings from multiple aspects. According
to the key findings from the collected literature, Section 6 makes
an overall discussion and suggests the future challenges. Finally,
Section 7 draws the conclusion.

2. Background and methodology

This section first introduces the literature review background
o illustrate the motivation and importance of this literature
eview. Next, it describes the methodology used to conduct this
iterature review, in which Alter’s DSS taxonomy (Alter, 1977) and
newly proposed AR taxonomy are introduced as the basis of the
ethodology used within this literature review.

.1. Why apply AR data visualization for decision support?

Zhu and Chen indicated that the decision-making process
ould be indirectly supported by technologies that facilitate
he ‘‘grasp of domain knowledge’’ and enhance the ‘‘awareness
f situations’’ (Zhu and Chen, 2008). The availability of informa-
ion could lead to better decision-making outcomes by reducing
81
the uncertainty involved (Varian, 2014), and visual represen-
tation of information is regarded as an important approach to
enhancing a decision maker’s ability to process the available
information (Coury and Boulette, 1992).

Compared to traditional desktop-based data visualization, Aug-
mented Reality (AR) data visualization has been shown to have
advantages for time-sensitive and ubiquitous information needs.
Thus AR visualizations have been proposed to facilitate decision-
making effectiveness and efficiency by providing users with rele-
vant contextual information to endorse their choices (Marques
et al., 2019b). Mekni and Lemieux (2014) pointed out that AR
presents a compelling user interface in context-aware computing
environments by allowing people to perceive virtual information
as existing in their surroundings (Chang et al., 2013).

Similarly, several novel AR data visualization techniques, such
as Situated Visualization (SV) (Walsh and Thomas, 2011; White
and Feiner, 2009b), Situated Analytics (SA) (ElSayed et al., 2016),
and Embedded Visualization (Willett et al., 2017), have been
explored to enhance the user’s perception of the information by
providing ‘‘clearer information presentation by directly associat-
ing the information with the relevant physical objects, more nat-
ural interaction for information exploration by touching and ma-
nipulating physical objects, and more sophisticated information
analysis providing contextual and overall information’’. ElSayed
et al. (2016). By constructing these semantic and spatial data-
reality relationships, AR data visualization systems can efficiently
filter relevant information and map the data representations with
the user’s current context and requirements. Accordingly, the
ability of AR visualization to associate data with its physical
context is one of the commonly agreed areas where AR has strong
potential for use in the context of decision support.

A successful Decision Support System (DSS) not only needs
to automate decision making, but more importantly, it needs
to adapt to different-level decision-makers and semi-controlled
problems (Martins et al., 2021). To successfully apply fixed
datasets and limited online resources into semi-controlled and
even dynamically-evolving decision contexts, a DSS needs to
be context-aware enough to accommodate a decision maker’s
requirements at any given time. In this procedure, identifying
the missed and highlighted part of the current decision context
may be critical in selecting and filtering valuable data from
the datasets. However, this capability of being aware of the
current decision contexts is fairly limited in traditional visu-
alization terminals, including big screen displays and portable
tablets. For these traditional visualization terminals, the main
data input strategies are limited to touch-screen interactions and
voice inputs, which prompted the user to proactively expressed
their current decision questions and information needs with UI
interactions and voice commands. These interaction approaches
distract the user from the external world where the decision
questions actually happen to get necessary run-time input for
further decision support, which therefore can fall short in de-
cision scenarios where the user needs to pay attention to the
real-world situation observations and reactions. Tablet cameras
are also utilized to capture more contextual information about
the external world to recognize the user’s face IDs, to diagnose the
patient’s affected area (Miller, 1994), to predict the plant’s current
growth stages (Olaniyan et al., 2018), and so on. However, these
DSS require the user to keep holding the tablet with its camera
facing the targeted objects, which may distract the user from their
current task at hand to keep checking and adjusting the camera
view. This problem can be well solved by nowadays AR headsets
thanks to the built-in webcam and microphones which work as
user’s extra eyes and ears that always keep monitoring the user’s
current visual field and surrounding sound following their head
movements. Moreover, modern AR headsets such as Microsoft
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oloLens and Apple Vision Pro support user gaze detection that
llows the system to accurately track the user’s currently focused
bjects, allowing the DSS to accurately understand the user’s
urrent surroundings and the decision questions that they are
onfronted with. Therefore, compared to traditional visualization
erminals, AR tablets and AR headsets can input more abundant
nd accurate contextual data to the DSS, allowing the DSS to
rovide more relevant and valuable information with less and
ven no reliance on the user’s manual input.
On top of the limitations of contextual information input

ources, traditional DSS systems usually isolate the decision sup-
ort data visualization from the relevant decision environment
nd users. For those decision-making scenarios where the formal
ecisions are made within the offices or labs, desktop-based
isualization of the decision support data can satisfy the user
equirements. However, for most non-expert decision-makers,
isualizing sophisticated and complex visual encoding on the
esktops may not help them efficiently make their daily deci-
ions. In these decision scenarios, compared to spending long
ime researching the sophisticated data analysis reports, having
he most immediate and in-situ access to simplified data rep-
esentations may be more helpful for the non-expert users to
ake instant decisions. Therefore, AR techniques may enhance

he daily instant decision-making experience by visualizing the
ecision support data at the exact place where it is related to.
he most typical AR navigation may be a perfect demonstration.
R navigation applications can localize an AR left arrow sign on
he exact road corners where a left turn is required. Compared to
he traditional navigation applications, the former visualization
trategy allows the user to immediately notice the place where
he given information indicates, instead of manually matching the
ap and the physical surroundings with multiple times of focus
witching.
In summary, AR techniques can bring the DSS more abundant,

ccurate, and implicit contextual data inputs, and also allows the
ystem to visualize the decision support data with more explicit
ssociations with the physical world. Therefore, according to this
ontextual understanding and its association with the decision
upport data, the system designer should determine the optimal
ata visualization approach for the DSS to reveal the hidden
attern of the data and its practical meaning for the current
ontext and the decision makers. Accordingly, when AR is applied
o facilitate this procedure, the data-reality associations should be
n important factor that affects the AR/DSS interface design.

.2. Literature review methodology

This literature review is conducted through 5 phases: de-
ine, search, select, analyze, present. Google Scholar was used as
he database to search conference papers, journals, and work-
hop proceedings articles from 2000 to January 2022. The key-
ords ‘‘Augmented Reality AND (decision-support OR decision
R decision-making)’’ were defined to search and filter relevant
ublications. Only English language publications that have pro-
osed or demonstrated AR-based decision support systems or
rameworks were selected from all returned results as relevant
xamples for analysis. In contrast, other publications that only
entioned relevant theories or future potential were excluded

rom the survey. Since AR-based DSS area has only attracted
ignificant attention in recent years and is still in its early ex-
loratory phase, this literature selection strategy yielded only 37
elevant publications.

The literature was analyzed according to the decision support
ata type and the AR data visualization approaches, in which
he AR data visualization approaches are classified based on the
emantic data-reality relationships. To facilitate the classification
82
of the AR data visualization approaches, this paper proposes a
novel AR data visualization taxonomy based on the semantic
data-reality relationships. For classifying DSSs, a classic decision
support system taxonomy is applied. Accordingly, these two tax-
onomies form two dimensions that allow this literature review to
classify and analyze the collected literature and investigate how
different AR data visualization strategies have been applied to
different DSSs.

To simplify the presentation of the literature analysis, all pa-
pers that present multiple DSS or AR data visualization strategies
are separated into multiple samples for analysis. Each sample
only falls into one DSS category and one AR data visualization
category. Therefore, 59 AR-based decision support system sam-
ples have been found, and each of them can be placed to a certain
point on the 2D surface formed by the two taxonomy dimensions.
To provide system designers with clear guidelines for selecting a
suitable AR data visualization strategy for a given decision sup-
port dataset and a decision context, this literature review needs
to answer several key focused questions in the AR/DSS design
and development process: What is the decision context? How
can the front-end interact with the decision support component?
What is the location relationship between the user, data, and
decision context? Accordingly, this literature review classifies and
analyses classified samples according to the following aspects:

• AR data visualization categories involved by the samples:
Each type of AR data visualization strategy shows different
advantages for decision support, which has led to the variant
development of these AR data visualization strategies in the
decision support realm.

• DSS categories involved by the samples: By investigating the
time tendency of the collected samples according to their
DSS categories, it is possible to gain an insight into how each
type of DSS has applied AR data visualization strategies to
enhance decision support over the last twenty years.

• AR inputs to the decision support component: AR can en-
hance DSS by visualizing certain datasets and providing AR
input to the decision support component. The proposed AR
data visualization taxonomy has shown how different types
AR data visualization strategies have been applied for var-
ious datasets. Therefore, the AR input of collected samples
is also categorized, based on which this paper analyzes how
each type of AR input has been utilized to enhance different
categories of DSS.

• AR data localization approaches: Unlike traditional desktop-
based DSS which isolates the decision support data from the
physical contexts, the localization of AR decision support
data directly affects how the user associates these data
with the physical decision-making contexts. The localization
approaches are determined by the semantic data-reality
associations and, more importantly, the DSS categories. An-
alyzing the AR data localization approaches applied by the
collected samples makes it clear how each AR data lo-
calization approach can benefit certain types of AR-based
DSS.

• AR Data Input and Localization Approaches for Decision Sup-
port: In most AR-based decision support systems, AR input
categories could directly affect what extra information the
decision engine could abstract from reality, and the AR data
localization approaches could affect how the output data can
be associated with reality. Therefore, analyzing how AR data
input and localization approaches are combined to enhance
different decision support systems may reveal deeper in-
sights of how AR techniques facilitate decision support from
data retrieval to presentation.
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Fig. 1. Alter’s decision support system taxonomy (Alter, 1977).

• Application areas involved by the samples: To investigate
the development of different types of AR-based decision
support systems in different application areas, this paper
analyzes the distribution and development tendency of the
common application areas involved by all collected samples.

The two primary dimensions in which each system will be
lassified relate to the chosen decision support taxonomy and
he chosen AR visualization taxonomy respectively. These are
ntroduced in the following sections.

.2.1. Dimension one: Decision support taxonomies
Alter (1977) proposed the first classical DSS taxonomy to clas-

ify DSSs based on the system outputs, after which multiple new
axonomies were proposed (Arnott and Pervan, 2005; Pearson
nd Shim, 1994; Bohanec, 2003; Power and Sharda, 2007; Zheng-
eng and Haoxiang, 2011). The leaf nodes (sub-categories with-
ut further sub-classifications) of most DSS taxonomies overlap,
aking the sample classification more complex and ambiguous.

n contrast, in Alter’s taxonomy all 7 DSS leaf node categories
re extended along a single dimension without overlapping, mak-
ng it possible to classify the samples into distinct categories.
oreover, compared to most DSS taxonomies that classified DSS
ased on hybrid metrics including decision support techniques
nd targeted end users (e.g. Arnott and Pervan, 2005; Zhengmeng
nd Haoxiang, 2011), Alter’s taxonomy classified DSSs based on
he results (decision support data types and generic operations)
hey presented to the end-users. Given the focus on AR data
isualization and interaction approaches, this is a compelling
dvantage over competing DSS taxonomies. Thus, Alter’s DSS
axonomy is utilized as one dimension to classify the collected
R-based DSS samples.
Alter et al. classified the DSSs into 7 distinct categories, which

an be grouped according to similar characteristics, as is shown
n Fig. 1:

• file drawer systems: provide online access to particular data
items.

• data analysis systems: systems that allow the analysts to
manipulate data and produce analysis reports; or allow or-
dinary users to perform general analysis actions such as data
retrieval, pictorial representation, and summarization.

• analysis information systems: provide management infor-
mation through a series of databases and small models.

• accounting models: use definitional relationships and for-
mulas to calculate the consequences of particular actions.

• representational models: similar to accounting models but
use non-definitional or partially definitional relationships to
estimate the consequences of actions and conditions.
83
• optimization models: study and mathematically describe
situations as complicated puzzles to analyze how to attain a
specific objective.

• suggestion models: generates suggested actions based on
formulae or mathematical procedures such as decision rules,
optimization methods, etc.

Among the 3 data-oriented DSS categories, the analysis fea-
tures provided to the users increase from the File Drawer Systems
to the Analysis Information Systems. System complexity and im-
plementation difficulties increase from the top to the bottom of
the list: File Drawer Systems only need to visualize data items
as the information retrieval tools, while Suggestion Models need
to propose decisions based on the current situation. As Fig. 1
shows, compared to the data-oriented decision support systems
which mainly provide information retrieval and data analysis,
the model-oriented systems afford higher-level decision supports
such as simulation and suggestion.

2.2.2. Dimension two: AR data visualization taxonomy
Since the concept of ‘‘augmented reality’’ was proposed, this

area has witnessed rapid development in hardware support and
application diversity. Thus numerous taxonomies have been pro-
posed to classify the AR applications and modalities according to
various dimensions. Normand et al. (2012) divided existing AR
taxonomies into 4 categories according to their taxonomy cri-
teria: technique-centered, user-centered, information-centered,
interaction-centered.

Technique-centered taxonomies mainly focus on the visual
displays (Milgram et al., 1995; Lindeman and Noma, 2007) or
the technical features of the AR systems (Braz and Pereira, 2008),
which exert much less impact on the design of the decision sup-
port systems compared to the other types of taxonomy criteria.

According to the interaction-centered taxonomies, the inter-
action between reality and virtuality are classified based on the
location relationships between the AR displays and the physical
targets (the physical referents of the AR content) (Mackay, 1998).
Individual Physical Referents therefore can be seen as real world
physical objects that data is associated with. Alternatively, the
interactions are also classified based on the AR system archi-
tectures (Dubois et al., 1999). Chen et al. (2019) classified AR
techniques according to the levels of the virtuality is related to
reality (‘‘weak’’, ‘‘medium’’ and ‘‘strong’’). However, they defined
the virtual-real relationships according to how the AR data is
presented and interacted in user end, which depends more on
the system designs instead of the dataset itself. To make use
of the greatest advantages of AR data visualization for decision
support, the data interaction and presentation strategies should
be designed according to how the dataset intrinsically affect the
physical decision environment and decision-maker users. In this
way, how will the users interact and utilize the presented data are
also mostly depends on such intrinsic data-reality relationships.

Information-centered taxonomies classified the AR systems
based on the AR data dimensionalities (Suomela and Lehikoinen,
2004) and the presentation spaces (Tönnis and Plecher, 2011).
These taxonomies focused more on the virtuality-reality interac-
tions and information presentation strategies, which are impor-
tant to the AR systems. However, most DSS taxonomies classify
the DSS mainly based on the content provided to the decision-
makers instead of where and how this content is present. Because
these taxonomies tend to ignore the content of the displayed data
and how the data may change user’s perception of the physical
contexts, they are less useful in the context of AR visualization
within DSSs.

A few user-centered taxonomies show some consideration for
the presented contents. Hugues and Fuchs (2011) classified AR
systems into 5 sub-functionalities according to the association
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Fig. 2. Hugues’s functional AR taxonomy (Hugues and Fuchs, 2011).
etween the AR data and the reality (Fig. 2). According to this
axonomy, the AR contents are associated with reality either by
reating an artificial part of the reality or providing augmented
erception of the reality, in which the former category visualized
he part of originally invisible reality while the latter category
rovided the information to allow for a better understanding of
eality. This taxonomy shows more direct relevance with the AR-
ased decision support systems. However, the leaf nodes of this
axonomy tree (Fig. 2) classified the sub-functionalities according
o mixed criteria of how the virtuality changes the perceived
eality and how the virtuality is placed around the reality. This
iscontinuity in classification criteria makes it hard to distinguish
ifferent semantic associations between the AR data and the
hysical context.
As is mentioned above, the data presentation and interaction

pproaches of most AR DSS should be determined by the semantic
nd intrinsic associations between the decision support data and
he decision contexts. Classifying AR data visualization strategies
ased on the semantic data-reality associations may allow DSS
esigners to quickly decide which type of AR data visualization
an be applied and how it can facilitate the presentation and
nteraction of the decision support data in specific decision con-
exts. Such AR data visualization taxonomies would also allow
or a clear classification and analysis of existing AR-based DSS.
owever, no existing taxonomy has clearly classified AR data
isualization systems based on these criteria. Therefore, a new
axonomy is proposed based on Hugues’ taxonomy (Hugues and
uchs, 2011) (Fig. 2), to focus on the semantic data-reality re-
ationships for AR data visualization classification. The following
ection explains the proposed taxonomy in detail.

. AR data visualization taxonomy based on semantic data-
eality relationship

The proposed taxonomy is presented as a tree in Fig. 3, in
hich each node represents a particular type of data-reality re-

ationship. For better readability, this paper assigns abbreviations
or 5 main branches of the taxonomy tree, which are important
ranches that will be frequently mentioned in the remainder of
he paper. The following subsections describe each category in
urn.

.1. No intrinsic relationship between the AR data and the reality
NoRela )

Although there is still some debate as to whether superim-
osing digital data that shows no intrinsic relationships to the
hysical context can be regarded as Augmented Reality, several
xamples of this type of visualization strategy have been de-
eloped nevertheless. Thus it is included as a category in the

roposed taxonomy (Fig. 3). For this type of data visualization

84
strategy, there is no intrinsic semantic relationship (NoRela) be-
tween the superimposed data and the physical context. For exam-
ple, the AR datasets do not update as the user’s current situation
changes nor do they integrate into the physical environment
to form an integrated-logical context. Different from how Chen
et al. (2019) described the AR data visualization approaches that
showed ‘‘weak’’ virtuality-reality relationships, this NoRela cate-
gory emphasized on the intrisic-semantic relationships between
the dataset and reality which cannot be altered by the interaction
and presentation designs. Such datasets can also be embedded
into the physical environments and supports basic user interac-
tions, but the changes in reality will not affect the dataset itself,
which indicates no contexts exchange between the datasets and
the external world due to the lack of intrinsic data-reality rela-
tionships. However, visualizing this type of dataset with AR dis-
plays provides certain advantages over traditional visualization
techniques:

• 3D Visualization & Tangible Interaction Space: for datasets
with high dimensionalities and complex inner structures,
AR visualization strategies allow the users to observe and
manipulate the detailed data structure with intuitive six
Degrees-Of-Freedom (DOF) interactions in a larger 3D space,
which is not possible when using traditional screen-based
visualization (e.g., Meiguins et al., 2006; Stasa et al., 2018;
Wolle et al., 2018; Billinghurst and Duenser, 2012; Heller
et al., 2019b).

• Visible Collaborators: this advantage is listed to draw a par-
allel with Virtual Reality (VR) visualization, which can also
provide 3D visualizations and interaction spaces. In contrast
to VR visualization, AR visualization strategies also allow
the user to see local collaborators while working within a
3D data visualization and manipulation space. For collabo-
rative data analysis tasks, direct communication with visible
collaborators may improve task performance (Billinghurst
et al., 1998b,a; Karlsson and Ng, 2017).

• Scale Comparison: Visualizing 3D models over the phys-
ical context in full scale gives the designers the original
view of the designed model. Compared to the miniature
model of designing using desktop-based visualization tools,
designing the full-scale 3D model within a physical context
allows the designers to detect scale inaccuracy in the early
phases (Hockett and Ingleby, 2016).

• Non-distraction Visualization & Interaction: Simply su-
perimposing digital data over physical context using AR
Heads-Up Displays (HUDs) avoids distracting the user’s at-
tention from the task at hand (Henrysson and Ollila, 2004).
Even without association with specific physical referents,
this type of data visualization strategy significantly increases
the convenience and safety for the visualization scenarios
when the user is concentrating on other tasks, such as
driving.
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Fig. 3. AR data visualization taxonomy based on data-reality relationships: labels in parentheses are abbreviations for the category names used in the text.
3.2. There exists intrinsic relationship between AR data and the
reality

All AR datasets that have an intrinsic semantic relationship
ith the physical contexts can play two roles within the physical
ontext: Augment the reality with subjective understanding; or
xtend the reality with extra visibility or external knowledge.
y playing the former role, AR information is associated with
ne or more relevant physical referents to augment the user’s
erception of them. This type of AR information is usually a
ubjective understanding of the associated physical referents, the
ata source of which is completely rooted in the physical context.
y contrast, extending the reality means bringing extra visibility
r external knowledge from outside of the associated physical
ontext or referents.
A similar description of the AR extension role has been pro-

osed as being important for decision support: ‘‘Augmented
eality (AR) is a technology that can assist with our daily decision-
aking tasks by presenting information that extends the phys-

cal world’’ (Gutiérrez et al., 2019). This argument does not
istinguish the AR extension from other types of AR visualiza-
ion. Hugues and Fuchs (2011) divided AR systems into two
emantic levels: reality with augmented understanding; and re-
lity with augmented visibility. However, the latter level was
imited to the imagery-augmented content. Moreover, as these
wo levels represent just one small part of their taxonomy, they
re only briefly discussed here.
In our proposed taxonomy, all semantic relationships between

he AR datasets and the physical context involve either the AR ex-
ending the reality, or augmenting the reality with subjective un-
erstanding. The taxonomy then contains several sub-categories
nder these two headings, which are described in detail below. In
ddition to the idea of augmented visibility proposed by Hugues
t al. the extension to the reality in the taxonomy also refers
o situations where external knowledge coming from new data
ources are referenced as an addition to the associated physi-
al referents. For example, superimposing other recommended
roducts around a focal product (Zhu et al., 2004) should be
85
regarded as an extension to the reality as these recommenda-
tions constitute new knowledge coming from data sources other
than the focal products themselves. By contrast, superimposing
a product description over a focal product is classified as falling
into the category of augmentation to the reality with subjective
AR understanding, since the product description is centered only
around the focal product. Therefore, the main difference between
these two roles is whether the AR data brings extra visibility to
reality or if it references new knowledge from the external data
source. The following sections will describe these two categories
and their sub-categories in more detail.

3.2.1. Augment reality with subjective AR understanding (AugRela )
By augmenting the associated physical referents with AR un-

derstanding (AugRela), the AR data strengthens the user’s per-
ception about this physical referent with the superimposed data,
which is normally subjective information centered around the
associated physical referents. Good illustrations of it can be found
from those AR annotations which superimposes some physical
referents with the definitions (Al Delail et al., 2013; Platonov
et al., 2006), descriptions (Reitmayr and Schmalstieg, 2004), and
explanations (Santos et al., 2014) of them (Fig. 3). These AR
datasets are all artificial information (text, images, and voices)
used to strengthen the user’s awareness and understanding of
the associated physical referents, thus the AR data are normally
located close to the physical referents to show the tight semantic
associations as how embedded visualization (Willett et al., 2017)
depicts. These datasets normally have simple structures as no
extra visibility or new references are involved, thus they are
widely applied in small-scale mobile AR applications for naviga-
tion, tour guide, and maintenance assistance. Similarly, Wither
et al. (2009) divided AR annotations into 5 classes based on their
semantic relevance to reality: names, describes, adds to, modifies,
and directs to. The former two types of AR annotations fall into
this category which augments the reality with AR understanding,
while the other 3 classes add extra visibility or modifications to
the reality.
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.2.2. Extend reality (ExRela)
AR extensions are not necessarily associated with specific

hysical referents. However, they are always associated with a
pecific context, which may convey some semantic information
ncluding the user’s location, requirements, preferences, focal ob-
ects, historical actions, and environmental changes. By connect-
ng such semantic information from the associated context and
ossibly integrating or analyzing it with new information outside
f the context, this type of AR dataset introduces additional vis-
bility or external complementary knowledge into the associated
ontext to satisfy the user’s visual or information requirements.
his type of AR dataset is regarded as an ‘‘extension’’ to reality
s it extends the original associated context with external con-
ents (ExRela). As this AR extension is not necessarily centered
round individual physical referents, it is sometimes not located
lose to any individual physical referent but instead appears as
ntegrated situated information displayed over relevant physi-
al context, as Situated Visualization has been depicted (White
nd Feiner, 2009a). For example, hovering a virtual path over a
hysical site to navigate the user (Zheng and Campbell, 2019)
an be regarded as extending the physical site with extra visible
outes. This virtual path is not centered around any specific
hysical referent but is associated with the user’s current con-
ext in terms of location and requirements. Moreover, the AR
xtension can show diverse data-reality relationships: associating
ultiple physical components of the user’s context to provide an

ntegrated continuous analysis of the physical environment based
n external information; introducing extra visibility as a logical
art of the original context to form a new integrated context; or
roviding context-aware information that is relevant to the user’s
mmediate requirements, inferred from their current context.

Both objective data and subjective/artificial data can be visu-
lized as AR extensions, in which the former depicts or simulates
he objects that exist in the physical world while the latter is
ormed by the subjective perspectives of human users. Differen-
iating whether the AR extension data is objective or subjective
an help identify the AR data visualization system’s purpose and
otential application contexts. Therefore two sub-categories are
roposed to distinguish the subjective extension and objective
xtension to reality (Fig. 3).
Extend Reality with Objective AR Data (ExObj) Some AR

systems extend the physical context by depicting parts of reality
that are invisible in the current context. For example, one sofa in
an IKEA factory can be visualized in the customer’s house with
AR technologies to make it visible within the customer’s physical
context (Heller et al., 2019a). Here, the AR sofa is objective data
as it is depicting a sofa that exists in the factory but is invisible
to the customer due to the distance. By visualizing these existing
objects which the user cannot perceive, extra visibility is added
to the user’s physical context. The following sub-categories are
listed to describe different types of objective AR extensions to
reality (ExObj).

• Temporally Extended Reality: AR is widely applied to vi-
sualize historical data that existed in the past reality and
future data that is predicted to happen in the future reality.
The depicted objects were or will form part of the reality
at some time but may not exist in the user’s current con-
text. Visualizing these datasets allows the user to see an
extended reality in terms of time by restoring past reality
or depicting a predicted future reality. Typical examples of
extending the current physical context with past reality can
be found in the AR applications that in-situ superimpose
the past appearances of historical sites, which allow for
the immersive understanding of the history that happened
at the associated sites (Cavallo et al., 2016; Pacheco et al.,
86
2015). AR future planning systems are also widely applied to
support architecture design and management by visualizing
the 3D building designs at the construction sites (Schu-
bert et al., 2015; Hockett and Ingleby, 2016; Golparvar-Fard
et al., 2009). Visualizing these future data allows for earlier
detection of flaws and easier on-site decision-making.

• Spatially Extended Reality: Users usually hope to see some
objects existing in distant or occluded places, and AR can vi-
sualize these objective datasets that are initially invisible to
the user due to spatial limitations. By visualizing these dis-
tant or occluded objects, these spatial limitations are over-
come to provide users with extra visibility of the inacces-
sible places. For example, a patient’s internal anatomy oc-
cluded by the skin could be in-situ superimposed over their
body to assist the minimally invasive surgery (Bichlmeier
et al., 2007).

• Always Invisible Anywhere at Any Time: On the oppo-
site to the spatial and temporal extensions to reality, some
objects existing in the real world are never visible to hu-
man eyes, such as the airflow, temperature, and moisture.
The invisibility of these objective datasets and the common
application of sensors and the Internet of Things (IoT) in
diverse areas make the requirements to visualize sensor
data increasingly significant in recent years. AR plays a vital
role in making the visualization of these sensor data more
in-situ and ubiquitous (Leppanen et al., 2014; Gushima and
Nakajima, 2017; Park et al., 2016; Baskaran, 2018; Jo and
Kim, 2016; Phupattanasilp and Tong, 2019; Alam et al.,
2017). Apart from being collected by sensors, these invisible
objective data can also be recorded from scientific analysis,
such as soil chemical composition (Zheng and Campbell,
2019; Phupattanasilp and Tong, 2019; Xi, 2018). Therefore,
these recorded scientific analyses and sensor data can be
superimposed over the associated physical context.

Extend Reality with Subjective AR Data (ExSub) Subjective
AR data is commonly visualized to extend the reality with extra
artificial visibility and subjective perspectives. In contrast to the
objective AR extension (ExObj), this type of dataset is formed by
people’s subjective willingness and artificial knowledge that are
relevant to the user’s physical context. This subjective AR data is
not centered around individual referents but is formed with the
information about multiple physical referents within the context
and is alternatively built upon new knowledge outside of the
context. The subjective AR extension can be concrete AR elements
to add extra artificial visibility or abstract information to provide
additional subjective knowledge:

• Abstract Artificial Data: Superimposing abstract artificial
data over the relevant context introduces new knowledge,
which normally works as supplementary information for
the associated context. This supplementary information is
normally provided based on the overall situation of the
user’s context, which can be perceived from multiple con-
textual parameters. For example, to provide step-by-step AR
maintenance guidance for technicians, the relevant position
information between multiple components of one machine
as well as the user’s historical maintenance steps both need
to be considered (Marques et al., 2019a). In this example, the
guidance extends the user’s context with a subjective under-
standing of the maintenance task. Other good illustrations of
the abstract artificial extension include visualizing the envi-
ronmental analysis for the current context (Guarese et al.,
2020b), recommending similar products for any selected
product (Gutiérrez et al., 2019), and suggesting relevant
resources based on a user’s search history (Hahn, 2012). In
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this proposed taxonomy, the suggestions, recommendations,
and guidance refer to different types of supplementary in-
formation: the ‘‘recommendation’’ indicates recommending
alternatives that are similar to the items that have been
selected, searched, or focused on by the user; ‘‘guidance’’
indicates instructions about how to complete a certain task
that is defined by the user; ‘‘suggestions’’ indicate the pos-
sible solutions to the user’s inquiries and issues, which
are provided by the system according to the user’s current
situation, predefined decision rules, and criteria.

• Concrete Artificial Data: Superimposing concrete and artifi-
cial data over the relevant context introduces extra visibility
according to the user’s subjective imagination. These types
of concrete-artificial data are not used to depict any reality
but describe the modified reality according to the design-
ers’ or users’ imagination. Such modified reality is typically
constructed to facilitate understanding of the actual reality.
For example, some AR surgery assistance allowed the user
to highlight or mark the affected parts to show noticeable
places, where these highlights help doctors to observe and
diagnose the affected areas efficiently (Chen et al., 2019;
Shenai et al., 2011) . Another example is the AR 3D models
simulation, which has been used to visualize possible results
under certain assumptions (Mao et al., 2017).

.3. Discussion on the taxonomy

This taxonomy classified AR data visualization techniques into
main categories: NoRela, AugRela, ExObj, ExSub. In this order,

he complexity of data-reality relationships and system design
ifficulties increase from NoRela to ExSub. As is mentioned above,
n the NoRela category, the datasets have no intrinsic associations
ith reality and the changes in the physical world will not gain
esponses from the presented data. In the AugRela category, the
atasets are generated based on certain physical referents for
escription, definition, and explanation, which bring the datasets
trong relationships to reality. The location and type of rele-
ant physical referents directly changes the content of the AR
ata that augments it. Therefore, in the AugRela category, the
ata-reality associations are commonly strong but in low di-
ension. By contrast, in the ExObj and ExSub categories, the
R data is not centered around any single physical referent but
n entire physical environment, which means there may exist
ulti-dimensional data-reality associations. To infer what extra

nformation is missed but required in a given physical environ-
ent, the designer need to analyze the targeted user scenarios
nd environments from multiple aspects, which may include
he possible physical referents that may appear there, the tasks
hat the user may conduct there, the potential changes that can
appen there, the new data input the system can obtain from
he environment, and the interactions between the user and
he environment, etc.. Based on such thorough analysis of the
argeted environment, the designer may start to understand what
ssential information is missed there and decide what datasets
an be embedded into the environment as a valuable extension
o help the user’s task completion. Such multi-dimensional data-
eality association and integrated environment analysis lead to a
igher complexity in dataset filtering and visualization design.
On top of such complexity of the AR extension visualization,

he design complexity between the ExObj and ExSub categories
lso differ. Extending the physical environment with objective
xtension requires the system to visualize objective data that
riginally exist in the given environment but are somehow in-
isible to users. To obtain such extension datasets, the system
esigner is given a fairly restricted scope: the given local or

emote usage environment with the supplementary information

87
btained from scientific measurement tools in extended time-
ine. However, to retrieving and filtering valuable datasets for
xSub categories, the data sources are not limited to above scope.
part from the information that can be obtained from the given
sage environment, any other subjective information should be
btained from multiple groups of relevant people, which may in-
lude certain domain experts, system stakeholders, end users, end
ser’s collaborators, or even ordinary users in similar domains etc.
herefore, another tasks before searching the valuable subjective
xtension datasets is to define the people groups that can provide
seful information for the targeted user scenarios and environ-
ent. After these people groups are defined, another challenging

ask making trade-off between potentially mutual-conflict input,
valuating the contributions and validity of the inputs from dif-
erent groups and weighing these inputs accordingly. These tasks
equire substantial pre-analyzing work and fruitful experiences
nd domain knowledge of the system designers.
Therefore, in each AR data visualization category, the data

earching, filtering, pre-analysis, and presentation steps all re-
uire understanding of the end users and usage environment to
ifferent extent. Categorizing AR data visualization strategies ac-
ording to the data-reality relationships and analyzing the usages
f these techniques from multi-dimensional aspects may give
learer instructions and inspirations to the system designers.

. Sample distribution along two taxonomy dimensions

Having outlined our AR data visualization taxonomy and iden-
ified a suitable DSS taxonomy, this section analyzes the 59 AR-
ased decision support systems that described in 37 papers col-
ected from the literature searching. In Table 1, all 37 papers
re summarized and classified according to the involved AR data
isualization categories and DSS categories. By categorizing them
ccording to these two taxonomies, all the 59 samples are illus-
rated in Fig. 4: a scatter bubble chart in which each bubble
tands for one type of AR-based decision support system. In each
ase, the X coordinate stands for a sample’s AR data visualization
ategory and the Y coordinate stands for its DSS category. The size
f each bubble represents the number of samples that fall into the
ppropriate category.
The X coordinate of each analyzed system denotes the leaf of

he AR data visualization taxonomy tree (Fig. 4) it falls into. As
here are 16 leaves in this taxonomy tree, to aid the analysis, the
main types of AR datasets proposed in Section 3 are displayed
long the X-axis: the AR data with no semantic data-reality
elationship (NoRela), the subjective AR understanding used to
ugment reality (AugRela), the AR data used as the objective ex-
ension to reality (ExObj), and the AR data used as the subjective
extension to reality (ExSub). In addition, to give a deeper insight
into the distribution, several important sub-categories are also
separated by dashed lines.

The 7 categories from Alter’s DSS taxonomy are shown on the
Y -axis, with the model-oriented and data-oriented DSS categories
displayed separately.

Fig. 4 is thus divided into 8 zones (two DSS categories and
4 main AR categories). One zone (AugRela/Model Oriented) does
not contain any samples. The following subsections discuss the 7
populated groups of AR-based decision support systems in turn.

4.1. AR data visualization with no semantic data-reality relationship
(NoRela) applied for data-oriented DSS

As Fig. 4 shows, only one AR-based decision support sys-
tem falls into this group, which enhances data-oriented decision
support systems with AR data that shows no semantic associ-

ation to the physical context. Heller et al. (2019b) developed
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Table 1
Paper summary according to the AR data visualization taxonomy(Section 3) and Alter’s DSS taxonomy (Alter, 1977).
AR data visualization categories DSS categories References

Augment the reality with AR descriptions; Extend the reality
with the subjective AR data

Analysis information systems;
Optimization models

Kaklauskas et al. (2015)

Augment the reality with AR descriptions; Extend the reality
with the subjective AR data

File drawer systems Zhu et al. (2004) and Irizarry et al. (2013)

Augment the reality with AR descriptions; Extend the reality
with the subjective AR data

File drawer systems; Data
analysis systems

ElSayed et al. (2016)

Extend the reality with the objective AR data Analysis information systems Alam et al. (2017) and Sangiorgio et al. (2021)

Extend the reality with the objective AR data Data analysis systems Guarese et al. (2020a), Schall et al. (2008) and Zulkifli and
Md Nor (2021)

Extend the reality with the objective AR data File drawer systems Phupattanasilp and Tong (2019), Gomes et al. (2012) and
Wake et al. (2018)

Extend the reality with the objective AR data File drawer systems; Analysis
information systems

Xi (2018)

Extend the reality with the objective AR data File drawer systems;
Suggestion models

Marques et al. (2019a)

Extend the reality with the objective AR data Representational models Olsson et al. (2012), Anagnostou and Vlamos (2011) and Wang
et al. (2013)
Fig. 4. AR-based DSS distribution: the X axis shows the AR data visualization categories (axis titles are abbreviations introduced in Fig. 3) according to the proposed
R data visualization taxonomy based on the data-reality relationships, and the Y axis shows the DSS category. The bubble label and size stands for the number of
nalyzed systems falls into this group of AR-based DSS represented by this bubble. The dash-line stands for the borders between sub-categories within the same AR
ata visualization category.
multi-sensor AR application to allow for interaction with AR
roduct holograms. Compared to traditional online retailing ser-
ices, which required the customers to imagine the tangible
xperience of products, this strategy increased the customers’
ecision comfort as it allowed users to manipulate the AR product
ologram with auditory feedback.
Unlike the IKEA furniture hologram visualization (Heller et al.,

019a) where the AR furniture was aligned with the floor and
ther physical furniture to form an integrated scene as in the
magination, the product holograms provided by this online re-
ailing AR service are independent of the user’s physical context
r local physical referents. Therefore, this AR product visualiza-
ion system showed no semantic data-reality relationship. How-
ver, the intuitive AR interactions and 3D visualization space
id provide a more tangible online shopping experience for the
ustomers to improve their decision comfort.
88
4.2. AR data visualization with no semantic data-reality relationship
(NoRela) applied for model-oriented DSS

AR holograms were also applied to simulate manufacturing
systems and provide available solutions to potential bottlenecks
identified by the model (Karlsson and Ng, 2017). Stakeholders
were allowed to observe the AR simulation models and discuss
the provided solutions to make decisions on improving manu-
facturing systems (Karlsson and Ng, 2017). By identifying the
possible bottlenecks and providing multiple available solutions
based on the simulation, this system falls into the optimization
model DSS category. These AR simulation models were designed
to be placed on any surface and show no semantic relationships
with the physical context, while the authors stressed the impor-
tance of the AR holograms for multiple viewing angles and the
AR model scaling capabilities. Also, as a collaborative decision
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upport system, using AR instead of VR to present a 3D simu-
ation model allows for direct communication with visible local
ollaborators. Therefore, this system is treated as two samples
hich respectively show how AR data visualization can enhance
ptimization models by providing a 3D visualization space and by
llowing for direct discussion on the optimization analysis among
isible collaborators.

.3. Augmenting reality with subjective understanding (AugRela )
o enhance data-oriented DSS

As Fig. 4 shows, the AR data visualization systems that aug-
ent reality with subjective understanding have only been found

o implement data-oriented decision support systems.
4 samples augmented specific physical referents with AR un-

erstandings, among which 3 visualized descriptions and one
isualized definitions for the associated physical referents. Such
R data provided online access to particular data items relevant
o the decision-involved physical referents; thus, they are all
egarded as file drawer systems. Product descriptions, such as nu-
rition content and advertising information, were superimposed
ver the focal product to impulse decision making (Zhu et al.,
004; ElSayed et al., 2016). Similarly, augmenting facilities under
aintenance with superimposed descriptions has been demon-
trated to enhance the decision-making process of facility man-
gers within a dynamic-complex working environment (Irizarry
t al., 2013). The names of physical referents were overlaid over
he power outlets, exits, and special seats of the classrooms as
R definitions to assist ordinary daily decision making such as
hoosing a seat (Guarese et al., 2020b).
In contrast to these data item augmentation systems, a differ-

nt system that falls into the AugRela category overlaid detailed
nteractive property descriptions based on multiple weighted
riteria to assist with property purchasing decisions (Kaklauskas
t al., 2015). This falls into the DSS category of the analysis
nformation system.

.4. Extend the reality with objective AR data (ExObj) to enhance
ata-oriented DSS

16 samples fall into the category that extends the reality with
bjective AR data to enhance the data-oriented decision support
ystems (Fig. 4). Of these, 5 samples spatially extended the re-
lity, and 10samples extended the reality with initially invisible
bjective data. One sample was found to enhance data-oriented
SS with AR temporal extensions.
By visualizing distant or occluded objects, multiple systems

rovided a spatially extended decision-making context for the
sers. To help drivers decide whether it is safe to engage in
assing maneuvers, an AR driving assistant system overlaid a
eal-time video stream on the windshield to visualize the road
head, which was occluded initially by the car in front (Gomes
t al., 2012). Similarly, to support surgical planning and decision-
aking during robotic partial nephrectomy, occluded anatomy
as visualized (Wake et al., 2018). The AR extension of distant
eality was also applied to support remote surgical decisions by
isualizing the remote operator’s hand and instruments (Shenai
t al., 2011). These 3 file drawer systems provide online access to
articular distant or occluded objects to assist decision-making
hat requires information from invisible spaces.

Spatially extended AR data was also applied in data analysis
ystems. An urban planning DSS in-situ overlaid the subsur-
ace infrastructure information on the ground to support virtual
edlining (Schall et al., 2008). Alternatively, an AR virtual try-on
pplication (Zulkifli and Md Nor, 2021) was designed to sup-
ort outfit decisions by allowing for basic outfit searching and

omparison actions.

89
The type of AR data that is always invisible includes recorded
scientific analysis and sensor data. These have also commonly
visualized to support decision-making tasks, for example those
involved with environmental changes. Situated soil sensor data,
recorded soil chemistry properties, and recorded crop analysis
were visualized to support the precision farming decisions (Phu-
pattanasilp and Tong, 2019; Xi, 2018; Zheng and Campbell, 2019).
Similar file drawer systems have also been found to support
general daily decisions with spatially visualized environmental
data such as airflow and people circulation (Guarese et al., 2020b).
In addition to these spatially visualized environmental data, gen-
eral data interactions, including searching, filtering, and selection,
are allowed for more complex decision-making contexts, such
as electromagnetic compatibility (EMC) related tasks. The mea-
sured EMC field was visualized as 3D field topologies and 2D
color-coded ray casts in a data analysis system to help users de-
tect electromagnetic interference that may cause the equipment
malfunction (Guarese et al., 2020a). To provide instantaneous
analysis for quick decision supports involved in more complex
smart environments where multiple heterogeneous sensor data
are available, two analysis information systems filtered sensor
data coming from different inputs with thresholding and fu-
sion processes (Alam et al., 2017; Zheng et al., 2022a) before
presenting the decision support data.

The only AR data-oriented DSS that visualized temporally ex-
tended data was found to be an analysis information system that
supports multicriteria architectural decision-making (Sangiorgio
et al., 2021). This system visualized the 3D models of a set of
building materials and the multicriteria ranking analysis on the
construction site where these materials are planned to be applied
in the future, based on which even non-expert users may also
easily find the most suitable building material from a set of
alternatives.

According to these 16 samples that extend the reality with ob-
jective AR data, the distant or occluded AR data and the sensed or
recorded scientific measurements are only found to be visualized
for data-oriented DSS. Only one temporally extended AR data was
visualized for data-oriented DSS.

4.5. Extend the reality with objective AR data (ExObj) to enhance
model-oriented DSS

Only 3 model-oriented decision support samples were found
to visualize objective AR data as an extension to the physical
context, and all these 3 samples fell into the DSS category of
representational models. All simulated the future reality to es-
timate the possible consequences of specific actions. To enrich
the understanding of building plans and support construction
decisions, an AR representational model (Olsson et al., 2012) in-
situ overlaid the simulated 3D models of the planned architecture
on the construction site, which was found to be advantageous
compared to the traditional printout-based visualizations. Similar
representational models are also commonly applied for archi-
tecture engineering decisions by presenting the ‘‘as-planned and
as-built’’ progress or support efficient communication by allow-
ing the project manager to obtain architecture information in
different locations (Wang et al., 2013). In addition, such future
data visualization was regarded as a promising strategy for urban
planning decisions. It was reported that by in-situ visualizing
the future planned constructions for residents, users were more
intuitively involved in the decision-making process that affects

their daily life (Anagnostou and Vlamos, 2011).
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.6. Extend the reality with subjective AR data (ExSub) to enhance
ata-oriented DSS

As Fig. 4 shows, most samples (23) fall into this category
here a subjective AR extension was visualized to enhance data-
riented decision support systems, where 15 samples extended
he reality with abstract-subjective AR data and 8 samples added
xtra visibility to the physical contexts with concrete-artificial AR
ata. AR marks and highlights were visualized as concrete subjec-
ive extensions to the reality in file drawer systems (Setiyawan,
013; Eyraud et al., 2015; Irizarry et al., 2013; Shenai et al.,
011; Chen et al., 2019; Zheng and Campbell, 2019), data analysis
ystems (ElSayed et al., 2016), and analysis information sys-
ems (Zheng et al., 2022b) respectively.

Beginning with file drawer systems, AR marks and highlights
re commonly applied for medical treatment and rehab decisions.
y highlighting the identified critical anatomic structures (Shenai
t al., 2011) and metastatic breast cancer in lymph nodes (Chen
t al., 2019) with colored AR marks, the doctors are informed with
ontinuous therapy decisions during the surgical training and co-
rdination process. AR marks are also an important approach for
uperimposing guiding paths. One AR rehab system allowed the
atients to wear AR headsets to complete rehab exercise follow-
ng the highlighted path, during which the exercise progress data
ere recorded to assist the therapists’ decisions on the treatment
lan (Setiyawan, 2013). Such AR file drawer systems were also
pplied for driving assistance by highlighting the road signs to
mpact the driver’s visual attention during the decision-making
hase (Eyraud et al., 2015). When applied for maintenance work,
he objects that can be used to support decisions were high-
ighted with AR outlines to assist the locating-the-right-object
ask (Irizarry et al., 2013). Such AR outlines have also been applied
or precise farming to highlight the field zone boundaries and
ssist the farmers’ decision-making on soil treatment (Zheng and
ampbell, 2019).
With customized information retrieval and filtering actions,

R highlights were also applied to the more complex data anal-
sis system by highlighting the products that satisfy the user-
efined metrics with data filtering and retrieval operations (El-
ayed et al., 2016).
AR marks were also applied in an analysis information sys-

em (Zheng et al., 2022b) to in-situ highlight the underperforming
reas of crop fields with yield underperformance analysis, which
avigated the users to the identified underperforming areas and
llowed them to mark diagnosed issues with AR annotations.
From Fig. 4, it is obvious that abstract-subjective AR ex-

ensions are more commonly applied to data-oriented decision
upport systems than model-oriented systems. When applied
ithin file drawer systems, users were provided with online
ccess to superimposed product analysis (Jain et al., 2018), nu-
rient guides (Gutiérrez et al., 2019), and product recommenda-
ions (Zhu et al., 2004; Gutiérrez et al., 2019) to support their
hopping decisions. Othman et al. (2021) designed a free-hand AR
pplication to assist operators in finishing a chemotherapy drug
reparation correctly. By recognizing and checking the drug sam-
les and volumes with AR web cameras, and providing step-by-
tep guidance following the operator’s voice command, this data
nalysis system ensured drug preparation safety using hands-free
R monitoring techniques.
More samples fell into the DSS category of analysis informa-

ion system, which directly superimposes the analysis reports
hat combined multiple datasets and analysis metrics. One house
urchasing decision support system was designed to in-situ over-
ay the recommendations of alternative properties with multiple
eighted criteria comparisons (Kaklauskas et al., 2015). In a
90
highly dynamic decision-making context, it is necessary to pro-
vide context-aware analysis reports by combining multiple real-
time environmental measurements according to predefined rules
and models. For example, by analyzing multiple measurements
such as airflow, seat occupation history, WiFi signal, and power
outlets, the analysis information system was able to spatially
overlay seat comparison to help the user select suitable seats
according to a set of user-defined criteria (Guarese et al., 2020b).
Similarly, by combining multiple sensor data and predefined Key
Performance Indicators (KPI) schemes, analysis information sys-
tems can in-situ display real-time reports about the KPI of each
workstation inside an industrial plant to assist manufacturing
management (Segovia et al., 2015).

Additionally, a COVID-19 cyberinfrastructure framework (Li
and Zhang, 2021) was proposed to visualize real-time spatial
analysis of how pandemics affect human emotion changes to
support risk-informed decision-making by analyzing social me-
dia streams, confirmed cases, and crime rates. In a similar way,
precise farming decisions may also be supported by in-situ spa-
tially overlaying the soil and crop analysis such as crop decease
prediction (Xi, 2018), and soil chemistry properties (Zheng and
Campbell, 2019). When applied to military training, brief alerts
of the contextual situation, such as ‘‘in attack range’’ and ‘‘in
the radar area’’, were also overlaid to support decision making
during an Unmanned Aerial Vehicles (UAV) mission (Wu et al.,
2012). Analysis information systems that applied AR to support
shopping decisions usually combine and filter product analysis,
recommendations, and comparison based on user-defined criteria
to assist the shopping decisions (Waltner et al., 2015; Gutiérrez
et al., 2019).

4.7. Extend the reality with subjective AR data (ExSub) to enhance
model-oriented DSS

9 model-oriented decision support systems were found to ex-
tend the physical context with subjective AR data (Fig. 4). When
applied for representational models, AR simulation is a potential
strategy to visualize the whole process of how specific actions
cause possible consequences in the current situation. For exam-
ple, It has been demonstrated that interacting with a simulated
AR battlefield over the battlefield map is effective for military
decision making by allowing for ‘‘perceived situation awareness’’
and ‘‘perceived usefulness’’ (Mao et al., 2017). AR simulation and
AR highlights have also been applied in matching tasks to provide
decision support for cognitively disabled, autistic, and trisomic
children (Richard et al., 2007). When applied in the more complex
optimization model, AR markers were applied to highlight the
optimal choices from the physical context for the user based
on the pre-defined goals. A good illustration is to compare the
multiple products in front of the user and highlight the products
that satisfy the user’s requirements (ElSayed et al., 2016).

In a context that requires more information about the optimal
actions to attain a specific objective, suggestion models were
designed to display more complex AR markers with possible
supplementary AR guidance or direct suggestions. The AR rehab
assistant system allowed the therapist to suggest an AR path
to guide the patient to move a specific object for rehab exer-
cises (Setiyawan, 2013). Similarly, AR markers and AR guidance
were also combined to support maintenance decisions by sug-
gesting step-by-step actions for specific maintenance tasks (Mar-
ques et al., 2019a). A Mixed Reality collaborative learning sys-
tem (Pan et al., 2021) superimposed each student’s quiz result
analysis over their head for the AR teacher client, based on which
the system generated teaching suggestions to instantly support
personalized teaching decisions for the teacher. Such direct brief
suggestions were also superimposed onto home appliances and
furniture to instantly support smart home decisions based on
real-time relevant IoT data measurements (Zheng et al., 2022a).
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.8. Summary

According to Fig. 4, these 59 collected samples show sev-
ral interesting characteristics in terms of the overall distribu-
ion. First, AR data visualization is more commonly applied to
ata-oriented DSS (45) than model-oriented DSS (14).
One possible reason might be the complexity differences be-

ween the data-oriented and model-oriented DSS on the system
esign and implementation. As is discussed in Section 2.2.1,
odel-oriented DSS involves the intelligent calculations and study
f the decision-making context, thus requiring more complex
atabases and model designs. Compared to the development
istory of decision support systems, AR data visualization has
tarted to gain research attention more recently, and its appli-
ation for decision support aims has appeared even more recent
till. This presumption can be supported by the observation that
he highest number of AR-based DSS are file drawer systems
24): most samples applied AR to support decisions in the most
traightforward manner. Another possible reason might be the
ommon feature of AR visualization to blend the virtual data
ith reality, which shows obvious potential for decision support
ontexts that require situated visualization of on-site datasets or
ntuitive data manipulation.

Second, the type of AR data visualization that augments reality
ith subjective AR understanding was only applied for data-
riented DSS. In this AR data visualization category, all AR data
s only centered around corresponding physical referents while
o external information or extra visibility is involved. This data-
eality relationship might have significantly limited the types of
atabases allowed for the decision support system, while model-
riented DSS typically requires the analysis and combination of
ultiple databases. More importantly, the models and algorithms

equired by model-oriented DSS are usually considered as exter-
al information for the decision-making context. Therefore, the
estrictions on the resource of the AR understanding that is used
o augment reality might have caused its limitations for more
omplex decision support contexts.
Third, among all 19 samples that extend the reality with

bjective AR data, only 3 samples (16%) fell into the category of
odel-oriented DSS. Except for the 3 representational models,
hich visualized future data to estimate the possible conse-
uences of specific actions, no objective AR extension has been
pplied to the model-oriented DSS samples. To infer the reason
ehind this gap, the ‘‘objective’’ description of the AR data might
ave limited its application to the model-oriented DSS, which
ainly outputs subjective estimations and suggestions to support

he decision. Accounting models may provide objective outputs
y calculating the consequences of particular actions based on
bjective contextual parameters such as sensor data, which might
e a potential usage of the objective AR extension in model-
riented DSS. However, no accounting models were found to
pply AR data visualization for decision support.
Finally, clusters (39 samples) are identified at the right bottom

f Fig. 4 where AR extensions are applied to data-oriented DSS.
wo reasons might cause this cluster: in the proposed AR data
isualization taxonomy, the AR extension category covers the
ost sub-categories; also, extending the decision-making context
ith extra visibility or external knowledge means more data
esources are allowed for the decision-makers, thus can be easily
pplied for data-oriented DSS.

. AR-based DSS sample analysis

The sample distribution in the previous section has classified
R DSS into 7 groups according to the relevant AR data visu-
lization strategies and DSS categories. While this classification
91
gives a helpful overall view of system type distribution, it does
not capture trends over time. Thus, this section first engages in
a deeper analysis of the temporal trends in the development of
this research area.

Section 2.2 outlines several other perspectives from which it
is helpful to analyze the identified samples. Accordingly, after
analyzing the temporal aspect, this section provides a higher-
level analysis of the samples from the aspects of the AR input
to DSS, AR data localization approaches, and application areas.

5.1. Development patterns of AR-based DSS over time

The line chart in Fig. 5 shows how the numbers of the above 7
types of AR-based DSS samples increase from 2004 to 2022, from
which the development patterns of the AR-based DSS area can be
seen over time. It is clear that among these, the most researched
type is the data-oriented decision support system that extends
reality with the subjective AR data (24 samples). This type of
AR-based DSS has become increasingly popular since 2013. The
number of data-oriented DSS samples that extend reality with
objective AR data began increasing rapidly in 2017 and ranked
in the top two by 2022 (16 samples). Since 2013, the two types
of data-oriented DSS categories based on AR extensions have
attracted much more attention than the other types of AR-based
DSS, and this gap has grown since 2017. Among the other 5 AR-
based DSS types, the model-oriented DSS that extends reality
with subjective AR data (ExSub) is the only one that has kept
increasing in research numbers from 2015 to 2022. The AR data
without semantic relationship (NoRela) to reality has always been
the least applied dataset for decision support systems.

Therefore, the subjective AR extension (ExSub) has been the
most popular dataset applied in either model-oriented or data-
oriented DSS since 2013. The objective AR extension (ExObj) has
een showing significant research interest for data-oriented DSS
ince 2017. The other identified categories of AR-based DSS have
ot attracted significant attention in recent years.

.2. Development patterns of DSS that apply AR data visualization

In Fig. 6, all 59 collected samples have been categorized into
groups according to their DSS categories per Alter’s taxonomy

6 of the 7 DSS categories have been found to apply AR tech-
iques for data visualization), and this line chart shows how the
umber of each group of DSS samples increases from 2004 to
022. The file drawer system has always been the most com-
on decision support system that applies AR techniques for data
isualization. AR-based file drawer systems have become even
ore popular between 2017 and 2020. The analysis information
ystem is the second most common DSS type among all collected
amples, which proliferated from 2013 to 2015. Compared to
hese two types of data-oriented DSS, AR-based model-oriented
ecision support systems have been much less integrated with AR
echniques. The representational model and optimization model
amples have stopped increasing since 2017.
From these tendencies, it can be seen that the model-oriented

ystems have much less commonly applied AR data visualization
trategies compared to the data-oriented decision support sys-
ems. Moreover, this gap between the data-oriented DSS samples
nd model-oriented DSS samples has been enlarging since 2017.
owever, between 2020 and 2022, this tendency has changed:
he AR-based file drawer systems stopped increasing while AR-
ased suggestion models started gradually increasing. It will be
nteresting to observe whether this pattern continues into the
uture.
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Fig. 5. AR-based DSS tendency: the X-axis shows the years, and the Y -axis shows the number of samples. Each line represents one AR-based DSS category.

Fig. 6. Time tendency of 6 types of DSS categories among 59 collected samples: the X-axis shows the years, and the Y -axis shows the number of samples. Each
line shows how the number of collected samples in one DSS category changes over time.
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Fig. 7. The tendency of different AR data visualization strategies applied to decision support: the X-axis shows the years, and the Y -axis shows the number of
amples; each line stands for one type of AR data visualization strategy according to the proposed taxonomy (legend labels are abbreviated).
.3. Development patterns of AR data visualization in decision sup-
ort realm

To clearly illustrate the tendency of how different AR data
isualization strategies have been applied for decision support,
ig. 7 divides all collected samples into 6 categories according
o the proposed AR data visualization taxonomy and visualizes
he increase of each category over time. Based on the 4 main
R data visualization categories mentioned in Section 4, the sub-
ategories of AR subjective and objective extensions are ana-
yzed separately according to the proposed taxonomy (Fig. 3):
he objective AR extension (ExObj) is divided into the exten-
ion of initially visible (ExObj-Visible) and invisible data (ExObj-
nvisible), and the subjective AR extension is divided into concrete
ExSub-concrete) and abstract data (ExSub-abstract).

According to Fig. 7, the two types of subjective AR extension
ave always been the most applied AR data in decision sup-
ort systems and have continued to increase rapidly in recent
ears. The number of DSS samples visualizing abstract-subjective
R extension (ExSub-abstract) started increasing rapidly since
013 and slightly exceeded that of the concrete AR extension
ExSub-concrete) samples in 2019, which may indicate a tendency
towards abstract-subjective AR extension for decision support in
the future. The objective AR extensions have been less commonly
applied for decision support than the subjective AR extensions.
Interestingly, the two types of DSS samples based on the objec-
tive AR extensions showed opposite trends in terms of growth
speed. The DSS samples that temporally or spatially extended the
initially visible reality (ExObj-Visible) started increasing steadily
from 2008 but stopped between 2013 and 2020. By contrast,
the DSS samples that extended the reality with the initially in-
visible objective AR data (ExObj-Invisible), only appeared for the
first time in 2015, accelerated from 2018 and had exceeded
the former type of DSS samples by 2022. This difference be-
tween the growth trends of these two types of objective AR
extension may have been affected by the popularization of the
Internet of Things (IoT) and Wireless Sensor Networks (WSN).
More daily decision-making tasks require the decision-makers to
93
be aware of dynamic environmental changes, which peripheral
sensors can directly provide in smart environments empowered
by IoT or WSN. Therefore, in these contexts, the spatial visualiza-
tion of these invisible environmental parameters may facilitate
immediate and intuitive decision support.

Compared to the AR extensions, which introduce extra vis-
ibility or new external information to the current context, the
subjective AR understanding of individual physical referents/real
world physical objects that data is associated with (AugRela)
and AR data that shows no semantic data-reality associations
(AugRela) seem to allow for fewer decision-support possibilities
than the AR extensions. The latter type of AR datasets has not
been found in decision support research prior to 2017, which
might also support the idea that the semantic data-reality associ-
ations provide significant advantages for on-site decision making.
Overall, Fig. 7 shows the recent trend of visualizing subjective
AR extensions and initially-invisible objective AR extensions to
support decision making. The spatially and temporally extended
AR data were commonly applied for decision support before 2013
but appear to have become popular thereafter. The other types of
AR data have not attracted substantial attention in the decision
support realm.

5.4. 5 Types of AR inputs to DSS

Augmented Reality not only features visual outputs that are
blended with reality, but more importantly shows significant
advantages for enabling intuitive interaction modalities through
capturing visual or tracking inputs from the physical context.
In most AR-based DSS, the decision support component takes
inputs from the AR front-end, generates the decision support
data based on these inputs, and returns it to the AR front end.
These AR inputs vary, and tend to exert different effects for
each type of decision support system. Therefore, to investigate
how different types of AR inputs have been applied for decision
support systems, 5 types of AR inputs are summarized from all
the collected AR-based DSS samples. The collected DSS samples
are found to utilize the following types of AR inputs to create,
retrieve, and filter the decision support data:
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Fig. 8. Distribution of 5 types of AR input along the AR visualization taxonomy and DSS taxonomy: the X axis shows the AR data visualization categories (axis titles
re abbreviations introduced in Fig. 3) according to the proposed AR data visualization taxonomy based on the data-reality relationships, and the Y axis shows the
SS category. The bubble label and size stands for the number of analyzed systems falling into each group. The bubble color stands for its AR input type. The dashed
ine indicates the borders between sub-categories within the same AR data visualization category.
• No input: very few AR-based DSS (1 sample) only applied
an AR front-end to display decision support data but took
no input from the AR front-end (Wake et al., 2018).

• Tracking:most AR-based decision support systems (22 sam-
ples) exploited AR tracking to filter and retrieve information
from the decision-making contexts. These samples either
retrieve data by tracking certain fiducial markers or take the
user’s current location and orientation data as the input to
filter the neighborhood data (Kaklauskas et al., 2015; Alam
et al., 2017; Guarese et al., 2020b; Segovia et al., 2015; Zheng
and Campbell, 2019; Schall et al., 2008; Marques et al.,
2019a; Irizarry et al., 2013; Richard et al., 2007; Olsson et al.,
2012; Wang et al., 2013; Li and Zhang, 2021).

• Web camera content: 9 samples recognized the user’s focal
objects and context to create, retrieve, and filter relevant
data to support the decision making (Wu et al., 2012; Walt-
ner et al., 2015; Gomes et al., 2012; Eyraud et al., 2015;
Chen et al., 2019; Jain et al., 2018; Zulkifli and Md Nor,
2021; Othman et al., 2021). This is usually achieved by
analyzing the images captured by the web cameras on the
AR display. This type of AR input allows for context-aware
decision support as the system can construct the semantic
associations between the decision maker’s context and the
decision support data to filter data according to what the
user is viewing. Compared to the decision support system
that take the user’s location to filter information, recogniz-
ing the user’s current focal context will be more adaptable
for a highly dynamic environment.

• Tracking + web camera content: 12 samples combined
AR tracking and web camera image recognition to create,
retrieve, and filter decision support data (Gutiérrez et al.,
2019; Xi, 2018; Phupattanasilp and Tong, 2019; Zhu et al.,
2004; Pan et al., 2021; Zheng et al., 2022a).

• AR data interaction: 15 samples mainly rely on the user’s
interaction with AR data, such as 3D manipulation and
gesture control, to generate the decision support contents
(Guarese et al., 2020a; ElSayed et al., 2016; Heller et al.,
2019b; Setiyawan, 2013; Shenai et al., 2011; Karlsson and
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Ng, 2017; Anagnostou and Vlamos, 2011; Mao et al., 2017;
Sangiorgio et al., 2021; Zheng et al., 2022b). The AR input
distinguishes itself from traditional data interactions for
the 6 DOF gesture interactions and intuitive 3D AR model
manipulation.

Based on these 5 types of AR inputs, their utilization in all
types of AR-based DSS are illustrated in Fig. 8. Each bubble stands
for a group of AR-based DSS samples (X, Y) that apply X type of AR
visualization approach to the Y type of decision support system.
The bubble color indicates the AR input it utilizes. The bubble
size and labels indicate the number of samples falling into each
group. As this figure shows, the AR input that solely relies on web
camera content has only been found in data-oriented DSS, while
the other AR inputs have been found in both model-oriented and
data-oriented DSS.

From Fig. 8, it is clear that AR-based DSS samples most com-
monly utilize AR tracking as the input of the decision support
component, which may be the easiest way to filter the decision
support data that are spatially distributed. The second most com-
monly applied AR input to DSS is web camera content, which is
usually applied to recognize the decision maker’s physical context
and sometimes combined with AR tracking to help refine the
decision support data based on decision context and location.
In other cases, the user’s interactions with the AR data are the
primary input to manipulate the decision support data.

Most samples fall into the category that takes AR tracking
as the input to the data-oriented decision support component,
which outnumbers the model-oriented decision support systems
that take the AR tracking as the input. Based on the AR tracking
input, file drawer systems and analysis information systems are
allowed to provide access to data items (Guarese et al., 2020b;
Irizarry et al., 2013; Zheng and Campbell, 2019) and analysis
reports (Kaklauskas et al., 2015; Alam et al., 2017; Guarese et al.,
2020b; Segovia et al., 2015; Zheng and Campbell, 2019; Li and
Zhang, 2021) about the user’s local surroundings. When applied
to representational models and suggestion models, AR tracking
usually utilizes marker trackers to locate specific physical ref-
erents and superimpose the pre-defined decision-support data
bound to them (Richard et al., 2007; Marques et al., 2019a).
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As Fig. 8 shows, the AR inputs that solely utilized web cam-
ra content have mostly been applied to visualize data-oriented
SS as an extension to reality. Utilizing web camera content
o understand the user’s current semantic context has been an
mportant strategy to visualize the most relevant information. As
s mentioned in Section 3.2.2, the AR data that extending reality is
ot necessarily tightly centered around specific physical referents
ut still relevant with the visualized environment, in which the
ata-reality associations are more opaque and indirect. Therefore,
ith a thorough understanding of the surrounding environments
hrough visual input from web cameras, the AR system may
onstruct an integrated association between all the recognized
hysical referents to conjecture what their combination means
or the current decision contexts. Such integrated environment
nderstanding may help the DSS decide what external knowl-
dge is most demanded to extend the current decision contexts,
hich may automate the data filtering and mapping process for
ata-oriented DSS. Therefore, unlike manual user interaction, the
ebcam visual input allows the DSS to provide data-oriented
xtension in a more unobtrusive and automatic manner. Given
hat most nowadays AR glasses are equipped with at least one
ebcam which works as the system’s ’’windows to the user’s
orld’’, the AR web camera is one important input that helps the
SS understand the user’s current situation and decision ques-
ions. This type of AR input is therefore widely applied in HUD
R DSS (Gomes et al., 2012; Eyraud et al., 2015; Setiyawan, 2013;
thman et al., 2021) and DSS targeted for non-expert users (Pan
t al., 2021; Zheng et al., 2022a; Gutiérrez et al., 2019).
When applied for analysis information systems, web camera

ontent is commonly applied to recognize the decision maker’s
hysical context and focal objects (Wu et al., 2012; Waltner et al.,
015), and then provide a series of datasets that are semantically
elevant to the recognized objects and context. Apart from the
ypical usage of object classification (Waltner et al., 2015; Wu
t al., 2012), web camera content has also provided more types
f information for file drawer systems and data analysis systems,
uch as a real-time stream of the situation at distant or occluded
laces (Gomes et al., 2012), keywords scanning (Jain et al., 2018),
ancer identification (Chen et al., 2019), drug volume estima-
ion (Othman et al., 2021), and body measurements (Zulkifli and
d Nor, 2021). Additionally, more file drawer systems combined
ensory AR tracking and web camera content recognition to mit-
gate the web camera recognition inaccuracy for the outdoor
ecision context (Gutiérrez et al., 2019; Xi, 2018; Phupattanasilp
nd Tong, 2019; Pan et al., 2021; Zheng et al., 2022a). Combining
R tracking and web camera content analysis also allows for
ontext-aware AR suggestion models that visualize relevant sug-
estions according to the user’s current semantic contexts (Zheng
t al., 2022a; Pan et al., 2021).
User interaction with AR data has been applied as the pri-

ary AR input in every DSS and AR data visualization category,
hich shows the essential role of user’s input no matter what
ata-reality relationship the system presents or what decision
uestions the system solves. In the NoRela AR data visualization
ystems, the only context that the DSS can obtain is the decision
aker’s interactions with the presented data. In such systems, the
ser interactions may include the user’s current action and the
nformation needs that they explicitly expressed to the system
y UI interactions or command input. Thanks to such user con-
extual data, these AR data visualization system can still provide
elevant decision support for the users even without sufficient
nderstanding about the physical environment.
When applied to file drawer systems, the user’s interaction

ith the AR data was either used to help filter the data items
resented to the decision maker (Setiyawan, 2013; ElSayed et al.,

016), or provide real-time visualizations for the remote clients
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in collaborative decision-making tasks (Shenai et al., 2011). For
data analysis systems and analysis information systems, the user’s
interaction with the AR data plays a more vital role to perform
general analytical actions such as data retrieval, selection, filter,
and manipulation (Guarese et al., 2020b; ElSayed et al., 2016;
Heller et al., 2019b; Zheng et al., 2022b; Sangiorgio et al., 2021).
When applied in the suggestion models and representational
models, the decision-making data can be directly generated by
the user’s interactions with the AR datasets. For example, the
user’s manipulation of the AR building models was directly input
to the representational model to generate the future urban plan
simulation in one sample (Anagnostou and Vlamos, 2011). This
example took user’s AR interaction as the main input to the deci-
sion system and generated the future simulation as the temporal
extension to the current contexts. Another example (Setiyawan,
2013) tracked patients’ rehab behaviors by analyzing the glove
interactions in an AR suite, by inputting which the system pre-
dicted the patients future rehab progress to help doctors adjust
further rehab planning accordingly. In this example, the predicted
future rehab plan was directly visualized as AR marks to extend
the patient’s current view of surroundings, instructing their next
step to improve their rehab exercises.

By investigating the distribution of 7 types of decision support
systems along the Y -axis of Fig. 8, file drawer systems have been
found to apply all the 5 types of AR inputs to form decision
support data, while no model-oriented decision support systems
has ever applied web camera content as the only AR input. AR
data interaction was applied in every type of DSS to allow for in-
teractive decision support. Representational models took only AR
tracking data and user’s data interactions as input to estimate the
consequences of specific actions at certain locations. Optimization
models have taken the user’s AR data interaction as the only input
to present the situation analysis. However, both the representa-
tional and optimization models also require the analysis of the
current situation to refine their estimation and situation analysis.
Therefore, it may be worth taking the contextual AR inputs to
enhance the decision support in representational models, such as
analyzing web camera content.

5.5. AR decision support data localization approaches

Nowadays, large-scale datasets provide abundant and hetero-
geneous information resources for all types of decision support
systems while making information overload and information in-
consistency critical challenges that hinder decision making (Roet-
zel, 2019). This issue is especially compelling for AR-based DSS
due to the limited Field-Of-View (FOV). Visual clutter led by
inappropriate visual arrangement and information filtering of the
AR data visualization systems may also cause safety issues. The
various AR input approaches provide new potential to help DSS
efficiently filter relevant AR data according to the user’s current
contexts, so that the amount of data is reduced before the vi-
sualization phase. However, the arrangement and localization of
visual elements constitutes another important research topic in
the AR data visualization realm, aiming to reduce the disconti-
nuity and inconsistency presented to end users. Therefore, this
section analyzes the AR data localization approaches of all the
collected samples.

Among all collected samples, the decision support data were
mainly visualized with several typical AR visualization paradigms:
situated visualization (White and Feiner, 2009b), in-situ AR visu-
alization (Ens and Irani, 2017), and embedded visualization (Wil-
lett et al., 2017). According to definitions of these paradigms,
AR data are integrated as an entire visualization or separated
into individual data representation, localized at the environment
where the data is collected or applied. Alternatively, the AR
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Fig. 9. Distribution of 6 types of AR decision-support data localization approaches: the X axis shows the AR data visualization categories (axis titles are abbreviations
ntroduced in Fig. 3) according to the proposed AR data visualization taxonomy based on the data-reality relationships, and the Y axis shows the DSS category. The
ubble label and size stands for the number of analyzed systems falling into each group. The bubble color stands for its data localization approach. The dashed line
ndicates the borders between sub-categories within the same AR data visualization category.
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ata may not be bound to specific physical environments but
re directly localized according to the user’s manipulations and
references. Through sample analysis, the AR data localization ap-
roaches applied in the collected AR-based DSS samples showed
pecific associations with the decision data types and the AR
ata visualization types. Therefore, 6 types of AR data localization
pproaches are identified from the collected samples and are
nalyzed along the two dimensions of the AR data visualization
axonomy and the DSS taxonomy (Fig. 9), as follows:

• Ad-hoc Overlaid on Where the Data is Applied: Each AR
data representation is overlaid on its corresponding physical
referent involved with the decision-making questions.

• Ad-hoc Overlaid on Where the Data is Collected: each AR
data representation is overlaid on its corresponding physical
referent where the data is collected.

• Ad-hoc Overlaid on Where the Data is Collected and Ap-
plied: each AR data representation is overlaid on its physical
referent that is involved in decision-making, in the situation
where the data is also collected from the same physical
referent.

• Entire visualization near where the data is applied: the
entire visualization of AR data is placed at the corresponding
decision-making context where the data is collected outside
of this visualization context.

• Entire visualization near where the data is collected and
applied: the entire visualization of AR data is placed at the
corresponding decision-making context where the data is
also collected from this visualization context.

• Decided by the user: the decision support data is not bound
to any certain fixed physical environment but are placed by
the user, either through moving fiducial markers or detect-
ing arbitrary physical surfaces for AR visualization localiza-
tion.

Fig. 9 shows how these AR data localization approaches are
pplied in different AR data visualization categories. Among the
96
amples that visualized AR datasets without semantic data-reality
elationships (NoRela), the AR data localization was all decided
by the user. The situated visualization of entire datasets has not
been applied by any of the samples that augmented specific
physical referents with subjective AR understanding (AugRela).
Regarding the two localization approaches that overlay individual
AR data representation or the entire AR dataset on where the
data is applied, the AR data is placed in relevant decision-making
contexts or decision-relevant physical referents but may appear
at a distance from the data sources. Thus, these two AR data local-
ization approaches have only been found within the DSS samples
that extend reality with additional visibility (ExObj) or external
complementary knowledge (ExSub). In these scenarios where the
sources of useful decision support data are located distant from
the decision-relevant contexts, visualizing decision-support data
with its proximity to the user or the decision-relevant contexts
may cause less cognitive load for users than in-situ visualizing
them over the data sources. This point may also be supported
by the similar distributions (Fig. 9) of the user-decided AR data
localization approach and the ad-hoc overlays of individual AR
data representation on where the data is applied.

More importantly, the data localization approaches have also
shown specific associations with the type of decision support data
according to Fig. 9. According to Willett et al. (2017), the entire
visualization of situated data is preferable to ad-hoc overlaying on
individual physical referents when the visibility and accessibility
of the entire dataset are crucial. This argument may explain
why the situated visualization of entire datasets has only been
found in data-oriented DSS: in contrast, model-oriented DSS place
much less emphasis on the interpretation of the dataset. Instead,
model-oriented DSS provide simulation and suggestions based
on targeted decision-making problems, thus these higher-level
decision support data are typically located with proximity to the
decision-maker and the decision-relevant physical referents. By
contrast, the AR data localization approach that overlays data on
where it was collected may separate the decision-support data
from the user and the decision-relevant context, thus it has only
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Fig. 10. How different AR input and localization approaches have been combined to visualize decision support data (The X axis shows the AR data localization
pproaches, and the Y axis shows the AR input categories; The bubble size stands for the number of analyzed systems falling each group. The bubble color stands
or its application area.).
een found in a few file drawer systems that have the lowest
ata operations and analysis requirements. Therefore, the user
ay still be able to acquire the brief information conveyed by

hese file drawer systems by glancing from a distance at the data
ource (e.g., sensors). Among all AR data localization approaches,
he most straightforward user-defined localization has also been
he most widely applied approach, being found among all types
f DSS categories. This tendency might be due to the critical
ecision-maker role of the end users. The most commonly ap-
lied AR data localization approach is ad-hoc overlaying AR data
n where it is applied (17 samples). This AR data localization
pproach was applied in both data-oriented and model-oriented
SS that extended the reality with AR data visualization. This
ocalization approach usually spatially maps the AR data with the
ecision contexts regardless of the data origin. Therefore, this
pproach stresses the semantic associations between the exter-
al visibility and knowledge and the decision contexts, based
n which the decision support data or models can be clearly
ssociated with the corresponding decision-relevant objects.

.6. AR data input and localization approaches for decision support

It has been illustrated above that how different AR data input
nd localization approaches have been respectively applied to
isualize decision support data. In most AR-based decision sup-
ort systems, AR input categories could directly affect what extra
nformation the decision engine could abstract from the user or
hysical environment to optimize decision relevancy and accu-
acy. On the other hand, different AR data localization approaches
ould affect how the data-reality relationships are presented to
he user to assist their decisions. Therefore, analyzing how above
R data input and localization approaches are combined to en-
ance different decision support systems may reveal deeper in-
ights of how AR techniques facilitate decision support from data
etrieval to presentation.

Fig. 10 illustrates how the collected samples combined 5 types
f AR input and 7 types of data localization approaches to en-
ance various decision support systems. Although Section 5.5
ound that the user-defined AR data localization approach was
idely applied in each DSS category, while it was missed from
he samples taking web camera input for decisions. This pattern
97
may have explained that one important role of webcam input
for AR system is to automate the data localization according to
the physical surroundings, which saves the users from manually
adjusting where the data overlays. The latter automatic localiza-
tion approach may allow for more flexibility and concentration
for the decision maker, which suits the decision support scenarios
where the user’s both hands are occupied or their full attention is
required to solve the decision questions, such as driving (Eyraud
et al., 2015; Gomes et al., 2012) and fieldwork (Phupattanasilp
and Tong, 2019). This figure clearly shows an obvious cluster
in the combination between the ad-hoc AR data overlaying and
the tracking input, which almost covers all DSS categories. This
cluster indicates a typical metaphor of AR-based DSS that ad-hoc
visualizes the decision support data with the proximity to where
the data is collected or applied based on the AR tracking input.

Although the file drawer system is found to be the most widely
applied DSS category that covers all types of AR input and local-
ization approaches, Fig. 10 presents a gap of AR-based file drawer
systems on the right-top corner, which indicates that no file
drawer system takes user interaction as the input and localizes
AR data as an entire visualization block. As it was discussed in
Section 5.5, ad-hoc overlaying AR data over the physical contexts
tend to stress more semantic data-reality associations compared
to the entire visualization of AR data blocks. Meanwhile, accord-
ing to Section 5.4, the user AR interactions are commonly input
to file drawer systems for information filter aims. For the file
drawer systems which rely on user’s proactive interactions to
filter information and present it with weak associations with
the surrounding environment, AR visualization techniques may
show very limited flexibility and context-awareness compared
to the traditional portable computing devices, such as tablet and
portable computers.

According to this gap, it can be conjectured that for those DSS
which only provides relevant information to aid in decisions, the
main advantages provided by AR visualization lie in either the
flexibility brought by hands-free interactions and implicit con-
textual information input, or the explicit data-reality associations
emphasizing brought by the ad-hoc mapping of the data chunks
and relevant physical referents. Without these two unique advan-
tages, the DSS may not obtain profound bi-directional contextual
information exchange between the inner system and external
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nvironment in an user-friendly manner. However, the essential
ontextual information may not only comes from the decision
nvironment, but also from the decision-maker users. There-
ore, even without such bi-directional environmental contexts
xchange, AR visualization techniques may still bring unique
dvantages for more complex DSS by providing intuitive user
nteractions for user-centered contexts obtaining (e.g. ElSayed
t al., 2016).

.7. Application areas

AR data visualization has been applied for decision support in
road areas. According to the analysis of all 59 collected samples,
heir application areas have been classified into 9 categories:
recision farming, purchase decision/e-commerce, manufacturing
ystems, maintenance/facility management, driver assistance, ar-
hitecture, surgery assistance/medical treatment, urban planning,
ducation, military, and others. To investigate how different types
f AR-based decision support systems have been applied in these
reas, the following sections discuss the distribution of samples
ithin these areas, and how this distribution has changed over
ime.

.7.1. Distribution
Fig. 11 illustrates the distribution of all 9 types of application

reas based on the collected samples’ DSS categories and AR data
isualization categories. Each bubble in this figure stands for a
roup of samples that combine the X type of AR data visualization
trategy and the Y type of DSS to support the decision in the area
epresented by its color (legend), and the bubble size indicates
he number of samples falling into this group. By investigating
his sample distribution, we may gain insights into how each type
f AR-based DSS has been applied to different application areas.
AR-based DSS has been most often applied to support pur-

hase decisions and e-commerce trading. Almost all samples ap-
lied in this area are data-oriented models. In addition, two types
f AR datasets have been commonly applied to support purchase
ecisions: the subjective understanding about the products (Au-
Rela) and the subjective external data as the extension to the
 a

98
urchase context (ExSub). By instantly visualizing the descrip-
ion, explanation, analysis, and recommendation of the products
ithin the purchase context, these systems allowed customers
o select and compare products much more easily. These data-
riented decision support systems only provide ubiquitous access
o the product information and leave the decision tasks to the
ustomers. By contrast, very few model-oriented decision support
ystems have been found to provide more direct decision support
y highlighting the suitable products according to user-defined
etrics (ElSayed et al., 2016). For such high-level decision sup-
ort systems, clear explanations as to the recommendation and
uggestions will be essential to increase user trust and system
ransparency (Nunes and Jannach, 2017).

Precision farming is the second common application of AR-
ased decision support systems. According to the distribution,
ll precision farming samples converge in the categories that
isualize AR extensions to enhance the data-oriented decision
upport systems. 5 samples fall into the category of file drawer
ystems, and 3 samples are found to be the analysis informa-
ion systems. As farmers usually need both hands available for
ork, instead of providing data analysis systems that rely on the

armers to frequently manipulate the data, file drawer systems
nd analysis information systems have been frequently applied
o directly present relevant soil and crop data or the analysis
f these datasets. In these file drawer systems, invisible data
uch as soil moisture, soil chemical properties, and temperature
ere initially visualized as an AR extension to support farming
ecisions on irrigation, fertilization, crop selection, etc. Analysis
nformation systems superimposed the situated analysis such
s historical crop yields and crop decease prediction over the
ser’s contexts to support the on-site decisions. Making these
recision farming data spatially aware allows the farmers and
gronomists to make informed decisions during field trips. How-
ver, no model-oriented decision support systems have been
ound in the precision farming domain to provide more direct
ecision support, even though a large percentage of farmers
re not equipped with enough professional knowledge to make

ccurate decisions in some complex contexts independently.
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Fig. 12. Application areas of AR-based DSS over time: the X axis shows the years, and the Y axis shows the number of samples in each application area by year.
AR data visualization has also been frequently applied to sup-
ort surgery assistance/medical treatment decisions. In this area,
ost samples are file drawer systems that visualize two types
f AR extensions: the spatially extended objective data such as
nder-skin anatomical structures or the remote surgeon’s hand
estures, and the extension with subjective concrete data such
s AR highlights or markers on the affected parts and iden-
ified cancer areas. By highlighting certain affected parts and
natomical structures under investigation, the surgeons may get
clearer view of the surgical anatomy and make accurate and
fficient decisions during surgery. Spatially extended AR data
ave not only been applied to in-situ visualize the under-skin
natomy, but more importantly, have played essential roles in
elemedicine by visualizing the remote surgeon’s gestures. These
urgery assistance systems are generally targeted at expert users
uch as surgeons and therapists who are assumed to be equipped
ith enough professional knowledge to make crucial decisions.
herefore these systems provided minimal interference to the
pplication context, leaving the vital decision to the medical pro-
essionals. Also, the surgical process often requires the surgeons
o concentrate on the operations with both hands. Therefore, file
rawer systems have been most commonly applied to provide
edical decision support with few data interactions.
Maintenance/facility management as one of the common

pplication areas of AR-based DSS shows a more scattered dis-
ribution as Fig. 11 illustrates. File drawer systems, analysis in-
ormation systems, and suggestion models have all been applied
o support decisions in maintenance work by superimposing
acility descriptions, sensor data, facility analysis, maintenance
uidance, and AR marks over their physical contexts. Among
hese datasets, the facility descriptions/analysis and sensor data
ll work as data-oriented decision support that strengthens the
orkers’ understanding of the environment under maintenance.

n contrast, suggestion models analyze the environment situation
nd facility properties to directly generate maintenance guidance
or the maintainers. Therefore maintainers can focus on the actual
aintaining operations with the anticipatory guidance. These
atasets vary in complexity and decision support levels, giving
oth skilled and unskilled maintenance workers options to select
lexible decision support according to their levels of expertise.
99
Similar to the decision support in medical treatment and precise
farming, maintenance work often also requires both hands to
complete tasks; thus, no data analysis systems have been found
in this area.

As the most common type of model-oriented DSS among all
collected samples, the representational model works as an impor-
tant strategy to support architecture, urban planning, and educa-
tion. One common type of representational model visualizes the
estimated consequences of specific actions by in-situ superimpos-
ing the predicted future of the current decision-making context
as an AR extension. These extended future estimations have been
applied to visualize architecture and urban planning blueprints
on site, therefore helping designers to identify design flaws early.

Aside from the application areas mentioned above, AR-based
decision support systems have also been found in military train-
ing, driving assistance, and other daily decision-making tasks.
According to the above discussion about the application distri-
bution of the AR-based decision support in multiple areas, each
application area seems to have different requirements in terms
of the complexity and visualization strategies of the decision
support datasets. Based on the investigation on these various
requirements, some guidelines on the future design of AR-based
decision support systems in several key areas have been indicated
in Section 6.

5.7.2. Development over time
Fig. 12 shows the distribution of the AR-based DSS in the

9 application areas over time. Purchase decision/e-commerce is
currently the most common application area of AR-based DSS,
and the samples in this area have continued to increase rapidly in
recent years. Precision farming decision support systems with AR
visualization strategies have only appeared since 2017, showing
drastic growth speed after that and ranking in the top two by
2022. Surgical assistance and maintenance work is also a common
application area of AR-based decision support systems. In recent
years, the application of AR-based decision support systems is
focused on these 4 main areas: purchase decision, precise farm-
ing, surgical assistance, and maintenance work, while the other
application areas have become much less widespread since 2017.

Therefore, it seems that the development of AR-based decision
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upport systems has entered the stage of converged research on
pecific applications that have shown significant potential after
he initial attempts in diverse areas.

. Discussion and future directions

This section provides a high-level discussion of the findings
bserved from the sample analysis provided above, which ana-
yzes the potential factors that led to the specific development
endency of AR-based DSS. After discussing these findings, several
uture directions are proposed with the support of relevant AR-
ased DSS examples, which may provide a guideline to inspire
he development of this research area.

.1. Discussion

According to our analysis of the collected samples, the devel-
pment of each type of AR-based decision support system can
e mainly affected by 3 factors: the difficulties of developing a
pecific type of AR-based decision support system; whether the
ain advantages of AR data visualization are essential to facilitate

he decision-making process; the development of the relevant
ontextual data collection technologies required by certain types
f AR-based decision support systems.
First, the difficulties associated with developing any AR-based

ecision support system depend on the complexity of the specific
ystem type and its restrictions on data-context relationships. For
xample, file drawer systems only provide online access to spe-
ific data items, thus requiring the least development effort and
aving the least restrictions on the data-context relationship. This
eans that it is relatively straightforward to integrate file drawer
ystems with AR data visualization, and file drawer systems have
een found to apply nearly all types of AR data visualization
trategies to support decision making (Fig. 4). By contrast, model-
riented decision support systems require a more complex design
f specific models. All model-oriented decision support systems
eed to analyze and study the user’s specific actions or the
urrent situations to provide subjective estimation, analysis, and
uggestion, which have massively restricted the data-context re-
ationships. The effect of these restrictions is reflected by the
istribution of model-oriented DSS samples (Fig. 4). They mostly
ppear in the zone where AR has been applied to extend the
eality with subjective data (Section 4.8). Therefore, the sam-
le analysis indicates that both the complexity of the decision
upport system itself and its restrictions on the data-context
elationship may have an effect on the development of different
ypes of AR-based DSS.

Second, the trends in each type of AR-based DSS are affected
y the degree to which AR data visualization can bring advan-
ages over other visualization approaches. As is mentioned in
ection 1, common advantages of AR data visualization include
ands-free interactions, instant data superimposition, spatially-
apped AR data for bi-augmentations between physical and
irtual spaces (Lee et al., 2008), and context-aware data visu-
lization. To motivate the use of AR-based visualization within
SS, it is necessary that these common advantages must bring
ignificant enhancements in terms of decision efficiency, ac-
uracy, or user satisfaction. Generally, data-oriented DSS tend
o focus more on the data visualization and interaction tech-
ologies when compared to model-oriented DSS, given their
ifferences in terms of the data volume and complexity provided
o the end-users. Accordingly, data-oriented DSS seem to be
onfronted with more challenges to reduce the cognitive load,
nalysis time, and domain knowledge required for an end-user
o make a decision based on a series of potentially complex data
rovided by the system. These challenges form the motivation
100
for seeking potential solutions from novel visualization tools,
while the typical advantages of AR data visualization contribute
to the emergence of AR-based data-oriented DSS research. By
contrast, model-oriented DSS usually keep the context under-
standing, data analysis, and computations within the system’s
black box and provide the end users with the final result. Ac-
cording to Fig. 9, it is the users who typically decide location of
the superimposed model-oriented decision support data. There-
fore instant data superimposition and hands-free interaction are
more significant for model-oriented DSS than the spatial map-
ping of context-aware data. AR-based model-oriented DSS are
thus mainly applied to time-sensitive decision support tasks that
require on-site decision-making (Fig. 11), such as manufacture,
shopping assistance, surgery assistance, precision farming, etc.
Because time is a critical factor for such systems, applying AR
data visualization to instantly superimpose decision support data
within the user’s field of view may save them from switching fo-
cus from the decision context to the traditional desktop or mobile
phone DSS interfaces. In addition, the diverse data visualization
requirements of each type of data-oriented decision support
system also lead to differences in their popularity. For example,
as is shown in Fig. 6, analysis information systems have been
much more commonly applying AR to visualize decision support
data compared to data analysis systems. This tendency has con-
tinued through to 2022, despite the fact that analysis information
systems require more complex data than data analysis systems.
One important reason might be their different requirements for
contextual data. According to Alter’s description of these two
types of decision support systems (Alter, 1977), a generalized
data analysis system is relatively context-free and leaves the
analysis work to the users by allowing them to operate on the
provided data. In contrast, analysis information systems usually
require external data and multiple datasets collected from the
decision-making context to provide a thorough analysis report.
Also, as is pointed out in Section 4.6, among all collected samples
most analysis information systems have been found to provide
analysis reports of the user’s context as subjective extensions, in
which the analysis reports are typically provided based on the
user’s historical actions and contextual data collected from the
user’s surroundings. Therefore, the motivation to adopt AR data
visualization for different types of DSS is strongly affected by how
relevant the advantages of such visualizations are to the specific
use case.

Third, all types of DSS massively rely on different types of
datasets to provide decision support. Thus the development of
the necessary data collection techniques will undoubtedly fa-
cilitate the development of relevant decision support systems.
As is pointed out in Section 5.1, objective AR data extensions
have become increasingly popular for data-oriented decision sup-
port systems. Additionally, visualizing initially invisible data as
an objective extension (ExObj-Invisible) to the physical context
has been a more common decision support strategy in recent
years compared to temporal or spatial extensions of the current
context. Moreover, as is shown in Fig. 4, among the collected
ExObj-Invisible samples, most samples have been found to visu-
alize sensor data. Based on these distributions and tendencies,
it can be concluded that sensor data has been more frequently
applied for data-oriented decision support systems. As is in-
ferred in Section 5.3, this trend might have been caused by the
popularization of IoT and WSN techniques, which makes sen-
sor data much more ubiquitous and accessible. Owing to the
increased accessibility of sensor data, context-aware AR systems
and decision support systems based on the contextual param-
eters have become more popular in recent years. For example,
according to the analysis in Section 5.7, precision farming and
maintenance/facility management are two key application areas
that commonly utilize sensor data for decision support, and have
shown significant growth trends in recent years.



M. Zheng, D. Lillis and A.G. Campbell Visual Informatics 8 (2024) 80–105

6

6
s

r
c
f
t
a
e
t
a
e
t
e
m
p
d
f
a
p
s
b
s
s
2
f
a
n
w
d
i
s
a
T
s
o
i

6
p

p
m
o
r
r
c
a
s
m
e
a
C
v
a
t
a
f
s
c

t
p
a

.2. Future directions

.2.1. Applying AR data visualization for model-oriented decision
upport systems

The analysis of all the AR-based DSS samples have shown the
esearch gap in AR-based model-oriented DSS: very few of the
ollected samples have been found to apply AR data visualization
or model-oriented decision support. For the decision contexts
hat involve vital decisions, such as medical treatment and driving
ssistance, the designers assume the users are equipped with
nough professional knowledge to make more accurate decisions
han the current systems. However, in several key application
reas, providing higher-level decision supports may allow non-
xpert users to instantly make accurate decisions even though
hey lack sufficient knowledge to analyze the decision alone. For
xample, precision farming aims to increase agricultural manage-
ent efficiency by providing expert knowledge for farmers (Phu-
attanasilp and Tong, 2019). Accordingly, providing higher-level
ecision supports such as crop yield optimization schemes or
ertilizer suggestions will allow the farmers to efficiently make
ccurate decisions during field trips. However, the collected sam-
les in this area are still limited in terms of data-oriented decision
upport. As is discussed above, one reason for the lack of AR-
ased model-oriented DSS might be the difficulty of developing
uch complex systems. However, several model-oriented decision
upport systems (Perini and Susi, 2004; Navarro-Hellín et al.,
016; Thorp et al., 2008) have been found to support precision
arming with prediction, estimation, simulation, and advisory
ssistance. Visualizing these datasets on the farm using AR tech-
iques to make them instantly spatial aware for the farmers
ill bridge the gap between indoor desktop analysis and in-field
ecisions, although integrating this high-level decision support
nto the physical context with AR intuitively and ubiquitously is
till a challenge. Similarly, this research gap also exists in other
pplication areas such as facility management and e-commerce.
herefore, more exploration on visualizing higher-level decision
upport with AR strategies will potentially boost the development
f precise farming, facility management, e-commerce, and related
ndustries.

.2.2. Utilizing environmental sensor data for on-site decision sup-
ort
As is discussed in Section 6.1, the recent trend of visualizing

revious invisible sensor data as an extension to the decision-
aking context might have been affected by the popularization
f wireless sensor networks, which allows ubiquitous access to
eal-time sensor data. By recording and analyzing these envi-
onmental sensor measurements, the decision support systems
an thoroughly understand the targeted environment and form
ccurate decision supports that suit the prevailing situation. This
trategy has shown significant advantages for on-site decision-
aking tasks in dynamically changing environments where these
nvironmental changes can significantly affect decisions, such
s precision farming, facility management, urban planning, etc.
ompared to traditional sensor data monitoring tools that pro-
ide centralized visualization of sensor data on screens, AR tools
llow the system to elaborate the decision-making context in-
uitively by visualizing the environmental sensor measurements
nd spatially mapping them to the local environment. There-
ore, a recent trend has been that data-oriented decision support
ystems visualize these sensor data with AR tools in the local
ontext.
Moreover, apart from visualizing these invisible environmen-

al parameters, including them in the computation and analysis
rocesses of model-oriented decision support systems will also be
potential future direction. One potential example are suggestion
101
models that generate suggested actions based on the analysis
and calculation of current environmental sensor measurements
according to predefined decision rules (Zheng et al., 2022a). Al-
ternatively, in representational models, these environmental pa-
rameters can also be applied to estimate the consequence of
specific actions in advance to avoid losses caused by suboptimal
decisions. In these potential scenarios, environmental sensor data
also allow the AR systems to be context-aware enough to appro-
priately locate these decision-support data at relevant parts of
the context on suitable occasions. However, since model-oriented
DSS may require a more condensed and integrated visualization
of the decision support data, efficiently filtering the heteroge-
neous sensor data and arranging the visual presentation to serve
the optimization and suggestion models will be an interesting
challenge.

6.2.3. Contextual AR inputs to model-oriented decision support sys-
tems

According to the discussion in Section 5.4, web camera content
analysis, as one important AR input to help systems understand
the decision-making context, has only rarely been applied to
provide higher-level decision support. However, this gap does not
mean a lack of motivation. For example, as is pointed out in Sec-
tion 5.4, although optimization models have tended to only take
the user’s AR data interaction as the input, this type of system
also needs to study and describe the current situations. Some
important contextual data may not be easily perceived from the
user’s interactions, such as the user’s current environment, focus,
and current AR information load over their spatial surroundings.
Perceiving these data utilizing the web cameras would help the
system filter and present more relevant decision support data
more appropriately.

Although fiducial marker tracking has also been commonly
applied to track the user’s focal objects for relevant data super-
imposition (Zhu et al., 2004; Segovia et al., 2015; Marques et al.,
2019b), it cannot be applied in large-scale unprepared environ-
ments. Therefore, web camera content may be a suitable contex-
tual AR input for decision-making tasks in such environments.
It has been applied in several data-oriented decision support
systems to analyze the user’s focus and surrounding context. For
example, by recognizing the food and crops within the user’s
field of view, AR systems provided certain data items relevant
to recognized objects (Phupattanasilp and Tong, 2019; Waltner
et al., 2015). Another example is that of smart home suggestions,
where suggestions based on the type of detected focal objects,
along with relevant datasets, can be used to provide higher-level
decision supports to help achieve goals more directly (Zheng
et al., 2022a).

Due to the limited time and focus during field trips, users
may not take a long time analyzing the decision question and
making prudent decisions. In this situation, web camera contents
may work as an essential input to record the field trip decision-
making process for further analysis. Based on prior works that
apply outdoor AR systems to provide on-site decision support
during field trips (Phupattanasilp and Tong, 2019; Xi, 2018; Zheng
and Campbell, 2019), after finishing the on-site tasks, the images
and videos captured by the web camera during the field trip can
be potentially recorded and uploaded for further in-depth anal-
ysis and computation. In this way, the web camera content can
be reused as thorough historical records of the decision-making
sites, allowing for more complex and time-consuming decision
supports after the field trip has been completed. Therefore, con-
textual AR inputs such as web camera content can potentially be
applied for model-oriented decision support systems to provide
more accurate suggestions, estimations, and situation analysis
by analyzing the user’s current focus and recording field-trip
captures.
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.2.4. Localizing multi-dimensional AR decision support data about
ndividual physical referents

As Section 5.5 discussed, the AR data localization approaches
f the collected AR DSS samples are either ad-hoc superimpo-
ition of individual data representations or the visualization of
ntire datasets. The former approach mostly overlays a single
ype of decision support data on individual physical referents.
llowing objects in the real world to have data directly asso-
iated with them. In contrast, the latter approaches normally
rovide the situated visualization of the decision support data
bout the entire decision-making context. However, in many
ecision-making contexts, the user may need to combine mul-
iple types of relevant data to support the decisions about an
ndividual physical referent. One good illustration may be the
R-IoT (Phupattanasilp and Tong, 2019) and STARE (Zheng et al.,
022a) interfaces which overlaid multiple relevant sensor data
nd decision support data over individual recognized focal objects
o support instant decisions. In complex decision contexts where
he data sources are heterogeneous, or the decision questions
re indistinct, the embedded visualization of multi-dimensional
ecision support data assembly may lead to less cognitive load
or the users compared to other common AR data localization
pproaches discussed in Section 5.5. However, more challenges
xist in relevant data filtering and visual element arrangement
o spatially visualize such multi-dimensional data over individual
hysical referents without information overload. To filter the
ulti-dimensional data that are relevant to the physical refer-
nts, the system should construct complex semantic data-reality
ssociations in advance. In the AR-IoT and STARE examples, the
ata-reality associations were manually constructed to associate
ultiple types of IoT data with different types of decision objects.
owever, to increase scalability, more generalized data-reality
ssociations should be constructed for various decision-making
ontexts to associate various available data and possible decision-
elevant objects within this context. Machine Learning and Deep
earning techniques may be utilized to automate the process of
reating and deriving associations, thus facilitating the revolution
f AR data visualization towards the future ubiquitous big data
ecision support.

.2.5. The explorations of AR-based suggestion models and past vis-
bility reproduction for decision support

By comparing the sample distribution (Fig. 4) and the AR data
isualization taxonomy tree (Fig. 3), we found that a few types
f AR data visualization strategies have rarely been applied for
ecision support. Among these, the AR extensions of suggestions
nd past visibility are both worthy of further exploration.
Suggestions, as one type of subjective AR extension, have

nly been visualized in two AR DSS samples to support teaching
ecisions (Pan et al., 2021) and smart home decisions (Zheng
t al., 2022a). The ‘‘suggestions’’ referred to in the proposed AR
ata visualization taxonomy particularly indicate ‘‘what to do’’
nder certain circumstances. Such suggestions usually have low
ataset complexity while only being effective in highly rele-
ant contexts. Therefore, visualizing a ‘‘what to do’’ suggestion
ypically requires a thorough analysis of the decision contexts,
specially when there are no predefined tasks or specific option
ists available. This means that the system needs to infer the
ser’s goal and the current situation, and then work out the
ossible solution. A good example of this type of suggestion
s the AR library service system that infers the user’s reading
equirements from the scanned assignment page, and then pro-
ides relevant library resources (Hahn, 2012). When applied for
ecision support, the provision of ‘‘what to do’’ suggestions will
equire even more complex data input and decision rules, such
s the multi-dimensional data-object associations constructed in
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the STARE system (Zheng et al., 2022a). According to the dis-
cussion in Section 6.1, the complexity of such systems might
be the main reason for this gap. However, the ‘‘what to do’’
suggestions will potentially increase the decision accuracy and
efficiency for numerous decision-making scenarios. For example,
superimposing these suggestions using the AR headsets for deci-
sion makers who are occupied by the task at hand allows them to
concentrate on their current work while making instant decisions.
Compared to traditional suggestion models that require users to
input queries and select parameters on a phone or computer to
learn the suggested actions, AR may provide a distraction-free
and instant solution to visualize the ‘‘what to do’’ suggestions in
an appropriate time and context.

Visualizing past situations is not something that has been
applied thus far in AR-based decision support systems, although it
is something that has significant potential for certain application
types. Visibility of future situations has been used in construc-
tion, to in-situ visualize architectural blueprints on construction
sites to support planning decisions (Olsson et al., 2012). In a
similar way, visibility of past situations may also facilitate de-
cisions for architectural restoration tasks. By in-situ visualizing
the original appearance of damaged or old buildings, architects
could easily create a restoration plan using the comparison be-
tween the original and current building appearance. Another
potential decision-support application of past visibility might be
in-situ historical flood visualization on a construction site. His-
torical flood records are always an important resource for future
flood risk estimation, and 3D visualization of future flood predic-
tion has also been applied to support building risk assessment
in the planning phase (Amirebrahimi et al., 2016). Therefore,
such historical flood data could be in-situ visualized to support
architectural decision making for flood-prone areas.

6.2.6. Explainable decision support through AR data visualization
In order for decision support systems to be considered trust-

worthy, transparent and effective, they should be able to provide
explanations for the advice that they provide (Nunes and Jannach,
2017; Gershman et al., 2015). This has prompted substantial re-
search on explainable decision support and explainable artificial
intelligence (XAI). In decision support systems, different forms
of visualizations such as graphs have been commonly applied
to convey explanatory information to users (Nunes and Jannach,
2017). However, the collected AR-based DSS samples tend to
lack this type of explanation. This may be due to the relative
immaturity of the AR-based DSS area and the limited number
of AR-based advice-giving systems. However, this does not mean
that this is not an important consideration within this research
area.

Explanations are especially important for time-sensitive de-
cision tasks in dynamically changing contexts. In such decision
contexts, to generate explainable advisories for front-line work-
ers or field-trip decision-makers, the system may need to visu-
alize the relationships and inferences between knowledge ob-
jects, including environmental variants happening in the decision
maker’s surroundings. Compared to visualizing these contextual
associations on laptops or mobile phones, AR data visualiza-
tion may enhance how the information is conveyed in a num-
ber of novel ways. Apart from instantly superimposing text and
voice explanations for the system-generated advisories in rele-
vant decision contexts, explanation graphs may be constructed
by extracting contextual data from the user’s surroundings and
spatially mapping these to the physical entities (Lee et al., 2008).
By highlighting the different physical entities in the decision con-
texts that affect the decisions, and visualizing their interrelations,
the decision maker may intuitively perceive how the physical
entities and events happening in their surroundings interfere
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ith the decision-making process. This process allows even non-
xpert users to understand the justifications and logic behind
he system-generated advisories with reduced cognitive load and
omain knowledge, which may provide new potential for the ex-
lanations of different aims including education, persuasiveness,
ransparency, trust, efficiency, satisfaction, etc.

. Conclusion

This paper proposed an AR data visualization taxonomy based
n the semantic relationships between the AR data and context.
ccording to this taxonomy and the DSS taxonomy proposed by
lter, 59 AR-based decision support samples have been classified
nd analyzed from the following aspects: the distribution and
evelopment tendency of these samples, the tendency of applying
ifferent types of AR data visualization strategies to support de-
ision making, the tendency of different types of decision support
ystems to apply AR data visualization, the different types of
R inputs for decision support systems, the AR data localization
pproaches applied for decision support systems, the distribution,
nd tendency of common application areas. Based on the sam-
le analysis from these aspects, multiple future guidelines and
esearch gaps in this area have been pointed out.

To facilitate the future development of the AR-based DSS
rea, researchers should apply more standard evaluation criteria
o evaluate how has a given AR interface affected the deci-
ion comfort and decision support satisfaction achieved by the
ystem-generated decisions and explanations for different groups
f targeted decision-makers. Based on such evaluation results,
he evolution of AR decision support interfaces will bring more
rofound enhancements to the decision support realm. In a world
hat is now data-rich but time-poor, better decisions could be
ade if the right decisions support tools were available in situ.
he taxonomy demonstrated in this paper offers a way to explore
his new field, allowing both experts and users to understand data
isualizations within AR.
It is essential to give language to AR-based DSS developers to

nderstand whether the information presented has an intrinsic
elationship with reality. Furthermore, it is critical to decide if
hat information can be used to extend the reality or can add
ontext to understand a decision. This taxonomy, when applied
o decisions support systems, offers a novel approach to helping
entally scaffold development in this new field for the future.
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