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ABSTRACT
Word embeddings act as an important component of deep models
for providing input features in downstream language tasks, such
as sequence labelling and text classification. In the last decade, a
substantial number of word embedding methods have been pro-
posed for this purpose, mainly falling into the categories of classic
and context-based word embeddings. In this paper, we conduct
controlled experiments to systematically examine both classic and
contextualised word embeddings for the purposes of text classifica-
tion. To encode a sequence fromword representations, we apply two
encoders, namely CNN and BiLSTM, in the downstream network
architecture. To study the impact of word embeddings on different
datasets, we select four benchmarking classification datasets with
varying average sample length, comprising both single-label and
multi-label classification tasks. The evaluation results with con-
fidence intervals indicate that CNN as the downstream encoder
outperforms BiLSTM in most situations, especially for document
context-insensitive datasets. This study recommends choosing CNN
over BiLSTM for document classification datasets where the context
in sequence is not as indicative of class membership as sentence
datasets. For word embeddings, concatenation of multiple classic
embeddings or increasing their size does not lead to a statistically
significant difference in performance despite a slight improvement
in some cases. For context-based embeddings, we studied both
ELMo and BERT. The results show that BERT overall outperforms
ELMo, especially for long document datasets. Compared with clas-
sic embeddings, both achieve an improved performance for short
datasets while the improvement is not observed in longer datasets.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing.
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1 INTRODUCTION
Word embedding is a way to represent a word with fixed-length
vectors of continuous real numbers. It maps a word in a vocabu-
lary to a latent vector space where words with similar contexts are
in proximity. Through word embedding, a word is converted to
a vector that summarises both the word’s syntactic and semantic
information. Consequently, word embeddings are considered to
be particularly suitable to be used as feature representations in
neural network models for downstream natural language process-
ing (NLP) tasks, such as text classification [13, 35–37], machine
translation [20], sequence learning [2, 24] etc.
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Figure 1: A taxonomy of word embeddings

Figure 1 presents a taxonomy of word embeddings. Broadly speak-
ing, there are two main types of word embeddings that have been
developed, namely context-independent and context-dependent
embeddings. Context-independent methods are known as “classic”
word embeddings, which learn representations through language
model (LM) based shallow neural networks or co-occurrence matrix
factorisation [34]. The learned representations are characterised
by being unique and distinct for each word without considering
the word’s context. Hence, these are usually pre-trained on gen-
eral text corpora and are distributed in the form of downloadable
files, which may be directly applied to initialise the embedding
weights for downstream language tasks. Prominent examples in-
clude word2vec [21], GloVe [23] and FastText [6].

In contrast with context-independent word embeddings, context-
dependent methods learn different embeddings for the same word
that is dependent on the context in which it is used. For example,
the polysemy “bank”, will have multiple embeddings depending
on whether it is used in a river-related context or finance-related
one. This feature has brought context-dependent embeddings into
the mainstream in recent times. As research has progressed, the
learning methods for context-dependent word embedding have
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mainly evolved in two categories. One category consists of those
approaches based on LM-based Recurrent Neural Networks (RNNs),
such as CoVe [20], Flair [2] and ELMo [24]. Alternatively, the re-
cently developed Transformer-based models [28], such as BERT [7]
and ALBERT [17], have been demonstrated to learn efficient con-
textualised word representations. Typically, there are two ways
in which contextualised embeddings can be leveraged for down-
stream tasks. Firstly, they can be used as fixed feature extractors
(not trainable along with the downstream parameters) to offer static
pre-trained input features of a sequence. Secondly, the pre-trained
embeddings are adjusted on a specific downstream dataset for pro-
viding input features of a sequence, in a process called “fine-tuning”.
Through fine-tuning, the Transformer-based models used to repre-
sent a sequence have achieved strong state-of-the-art performance
for many downstream NLP tasks [7, 17, 33]. Although fixed extrac-
tors do not perform quite as well as those that are fine-tuned, they
do offer an advantage to the downstream task in that they do not
require parameter training and consequently consume less time
and memory.

Although many different word embedding methods have been de-
veloped, to the best of our knowledge few studies have been under-
taken to systematically compare both classic and contextual embed-
dings in specific downstream language tasks. Our work constrains
the specific language task to text classification. We empirically eval-
uate a wide range of pre-trained embeddings, from the classic word
embeddings to more recent contextualised embeddings (used as
fixed extractors for efficiency concerns) and report their effect on
the performance in different classification domains.

For comparison purposes, each set of pre-trained embeddings is
used within our downstream network architecture for a range of
document classification tasks. Within this architecture, an encoder
is needed for learning a sequence representation from word repre-
sentations. Each of the pre-trained embeddings is evaluated with
both a simple convolutional neural network (CNN) encoder and a
bi-directional LSTM (BiLSTM) encoder.

The primary purpose of this work is not to compete with complex
state-of-the-art methods. Instead, we take the resource needs of the
model into account to present a methodology for selecting suitable
low-resource configurations for text classification experiments. The
primary contributions of our work are summarised as follows:

• Our work provides insights for choosing word embeddings
in different text classification domains using CNN or BiLSTM
as the downstream encoders. The experimental methodology
is transferable and applicable to other downstream architec-
tures and language tasks.

• We conduct an empirical survey on word embeddings. The
survey is considered to be instructive for benchmarking
analysis of word embeddings in neural network based text
classification.

• We produce a framework that can be used for efficient word
embedding selection in neural network models given differ-
ent text classification datasets (single-label or multi-label).

2 RELATEDWORK
This paper mainly focuses on the evaluation of word embeddings.
This section introduces related work from methods of evaluating
word embeddings, existing studies of evaluating embeddings in
downstream tasks.

Word embeddings evaluation is broadly divided into two categories
in the literature, namely, intrinsic and extrinsic evaluation [27, 29].
The intrinsic method evaluates word embeddings by examining
their effectiveness in providing both syntactic and semantic repre-
sentations for words. The most common specific tasks for this type
of evaluation include word relatedness/similarity or analogy match-
ing [4, 9, 27]. However, our work is more closely related to extrinsic
evaluation. It evaluates word embeddings by leveraging them to
provide input features in neural-network-based downstream lan-
guage tasks, such as text classification. To test their effect effectively,
one crucial factor in comparison experiments is to keep the embed-
ding layer as the only variant but with others as invariants. This
motivates the aims of our work.

Regarding the studies on extrinsic evaluation, Hawani et al., [27]
examined some classic word embeddings such as word2vec, Glove,
FastText in multiple downstream tasks, including sentiment analy-
sis, text inference, etc. Their results show that random initialisation
of the embedding layer is trainable to achieve equivalent perfor-
mance as initialising the embedding layer with the pre-trained
classic embeddings. Naili et al., [22] investigated Latent Semantic
Analysis [10], word2vec and GloVe in the task of topic segmen-
tation (TS) with cross-language datasets (Arabic and English). In
particular, they examine the word2vec model in depth and explore
its impact on TS with different ways of training it. They conclude
that word2vec hits a good performance with a careful decision
on the training algorithms according to the characteristics of a
language-specific dataset. Similar to the comparative study of word
embeddings for a downstream task, Dhingra et al., [8] studied the
impact that pre-trained word embeddings (word2vec and GloVe)
have on reading comprehension (RC) using datasets from different
domains. Their work shows that the choice of using pre-trianed
embeddings as feature representations largely impact the perfor-
mance of RC. Kaibi et al., [14] comparatively evaluated three classic
word embeddings (Word2vec, Fasttext and Glove) for Twitter sen-
timent analysis with a number of machine learning algorithms,
which concludes FastText combined with a SVM classifier generally
outperforms other combinations.

Our work exhibits similarities with the aforementioned studies in
one aspect or another. We consider three dimensions in our ex-
trinsic word embeddings evaluation. First, we investigate classic
embeddings as well as comparing them to contextualised embed-
dings in parallel. Second, we select the classification datasets from
different domains to explore how differently the downstreammodel
architectures CNN and BiLSTM perform based on dataset charac-
teristics. Last, as inspired by the confidence testing for intrinsic
evaluation [27], we report confidence intervals for accuracy as
references to evaluate embeddings strictly.



Text tokeniser

Sentence/document
(single/multi-label)

Embedding layer Downstream
encoder

Fully connected
layer Classification

Classic embeddings
Character-level embeddings
Contextualised embeddings

Word

representations

Single/multi-labelCNN/BiLSTM

Figure 2: The architecture of leveraging various pre-trained word embeddings for text classification in neural networkmodels.

3 METHODOLOGY
To systematically study word embeddings in neural-network-based
downstream models for text classification. Figure 2 presents the
overview of our methodology.

First, the text tokeniser splits a text sequence into tokens before it
is sent to the embedding layer. To explore how word embeddings
have an impact on different datasets, our selected datasets tend to
be different in both length and characteristics. Some of the datasets
consist primarily of short sentences and some of long documents.
Additionally, they are either single-label or multi-label datasets (see
Section 4.1 for a detailed description of the datasets). This variety
of datasets suits our needs to study the impact of word embeddings
on different classification domains.

Having prepared the dataset, next assume a training example 𝑠
that consists of a sequence of 𝑛 words: ⟨𝑤0,𝑤1,𝑤2, ...,𝑤𝑡 , ...𝑤𝑛⟩.
The embedding layer converts the words with pre-trained word
embeddings to word vectors: ⟨𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑡 , ...𝑥𝑛⟩. In our study,
we consider three categories of word embeddings as follows:

Classic embeddings: This type of embedings are pre-trained over
very large corpora and shown to capture latent syntactic and se-
mantic features. The following gives a list of popular classic word
embeddings.

• word2vec [21]. This is a well-known classic word embed-
ding method that applies either of twomodel architectures to
produce word vectors: continuous bag-of-words (CBOW) or
skip-gram (SG). Both methods are trained based on a neural
prediction-based model. CBOW trains a model that aims to
predict a word given its context, while SG does the inverse,
to predict the context given the centre word in it.

• GloVe [23] is a classic word embedding method that learns
efficient word representations by performing training on ag-
gregated global word-word co-occurrence statistics from
a corpus. Due to this feature, it is advantageous at cap-
turing language features globally by analysing words’ co-
occurrences across corpora.

• FastText [6] is another classic word embedding method
that learns word representations through a neural language
model. Unlike GloVe, it embeds words by treating each word
as being composed of character n-grams instead of a word
whole. This feature enables it not only to learn rare words
but also out-of-vocabulary words.

Character-level embedding (Char) [16, 35] is commonly used
to concatenate with classic word embeddings for providing sub-
word features. The character-level embedding for a word is usually
output by a CNN or RNN encoder, which is fed with the word’s
character constitutes as the input. Hence it is not pre-trained but
instead is trained along with the downstream model training on
task data.

Contextualised embeddings: are known for capturing word se-
mantics in context, in contrast with other embeddings. Below are
a list of recently-developed contextualised embeddings that have
become mainstream for language tasks.

• ELMo [24] is a context-based word embedding method. It
learns contextualised word representations based on a neu-
ral language model with a character-based encoding layer
and two BiLSTM layers. The character-based layer encodes
a sequence of characters of a word into the word’s represen-
tation for the subsequent two BiLSTM layers that leverage
hidden states to generate the word’s final embedding.

• BERT [7] is a relatively new transformer-based language
representation model trained on a large cross-domain cor-
pus. Unlike ELMo, which pre-trains representations through
bidirectional language models (i.e., simply the combination
of left-to-right and right-to-left representations), BERT ap-
plies a masked language model to predict words that are
randomly masked in a sequence, and this is followed by a
next-sentence-prediction task for learning the associations
between sentences. Through a process of fine-tuning, BERT
has achieved state-of-the art results for a range of NLP tasks.
Since it was introduced, many follow-up variants like data
enhanced RoBERTa [19] or model optimised Albert [17] have
emerged to further advance the state of the art in language
representation learning.

As described, each embedding method has its distinctive charac-
teristics, and it is important to know what feature vectors will be
offered by either using them individually or in combination. In
the workflow for text classification, the embedding layer applies
one or more pre-trained embeddings to generate word represen-
tations for the downstream encoder, denoted by 𝑒 . In our method,
we apply either CNN or BiLSTM to encode the embedded vectors
⟨𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑡 , ...𝑥𝑛⟩ into a summary of single sequence represen-
tation: i.e. o = 𝑒 (𝑥0, 𝑥1, ..., 𝑥𝑛). After being encoded, o is forwarded
to a fully connected layer denoted by 𝑓 to output the logits cross
all labels: g = 𝑓 (o). For single-label classification, the probability
of sample 𝑠 belonging to label 𝑙𝑖 , namely 𝑝 (𝑙𝑖 |𝑠) is estimated by the



softmax function

𝑝 (𝑙𝑖 | 𝑠) =
𝑒𝑥𝑝 (gi)∑𝑇
𝑗=0 𝑒𝑥𝑝 (gj)

where𝑇 refers to the number of labels. For multi-label classification,
the probability is estimated by the sigmoid function

𝑝 (𝑙𝑖 | 𝑠) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (gi)

where the label 𝑙𝑖 is predicted for the training example 𝑠 if the
estimated probability is larger than 0.5.

4 EXPERIMENT SETUP
The experiment setup includes the selection of datasets, configura-
tion of downstream models, and choice of pre-trained embeddings.
The details of these components are given below.

4.1 Datasets
We select four popular benchmarking classification dataset. These
datasets vary in size, number of classes, types (single-label or multi-
label), and categories (topic or sentiment). Table 1 presents a sum-
mary of the datasets and Figure 3 plots sample length distribution
for the four datasets.

• The 20NewsGroup [18] dataset consists of around 18,000
newsgroups posts on 20 topics. The dataset is originally split
into a training set and test set based on messages posted
before and after a specific date. In our experiment, the train
set is further split randomly into training and development
sets at a ratio of 4:1.

• The Stanford Sentiment Treebank dataset (SST) [25]) con-
tains phrases with fine-grained sentiment labels in movie
reviews. This dataset provides standard 5-way (SST-5) or
binary (SST-2) classification splits for model training, devel-
opment and evaluation. We use the standard binary classifi-
cation splits SST-2 in our experiment.

• arXiv Academic Paper dataset (AAPD) [32] is a multi-label
dataset, which comprises paper abstracts extracted in the
field of computer science from arXiv1. Each document in
AAPD is labeled with one or more subjects across 54 subjects
in total. In our experiment, we use the train, development,
and test splits used in [1].

• Reuters-21578 (Reuters) [3] is another benchmarking multi-
label dataset for document classification, which consists of
news content extracted from the Reuters newswire in 1987.

1https://arxiv.org/

Table 1: Summary of the dataset characteristics.

Name # Train/dev/test # Classes Type Category Words/Sample
20NewsGroup 9051 / 2263 / 7532 20 single Topic 221.26
SST-2 67349 / 872 / 1821 2 single Sentiment 9.79
AAPD 53840 / 1000 / 1000 54 multi Topic 167.3
Reuters 5827 / 1943 / 3019 90 multi Topic 144.3
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Figure 3: The number of words (sample length) versus the number of samples (sample frequency) of the datasets - 20News-
Group, SST-2, AAPD and Reuters. For better visualisation, only the samples with number of words less than 2000 and 1000 for
20NewsGroup andReuters respectively is displayed. std. denotes standard deviationwherewe can see 20NewsGroup comprises
samples with the most varying length among the four datasets.
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In this dataset, each sample is labeled with one or more news
categories out of 90 in total. We use the standard ModApte
splits [3] for our experiments.

4.2 Model Training and Parameters
In our experiments, we adapt two classic deep learning models to
the downstream encoder s, namely CNN and BiLSTM. Although
there are many other well-developed neural network models, such
as C-LSTM [36], bi-attentional classification network [20], etc., we
consider CNN and BiLSTM as the starting point due to their wide
use and relatively few trainable parameters.

We implement the two encoders using theAllenNLP framework [11].
The configuration details of each encoder are given below.

• LSTM is commonly utilised for sentence-level text classifi-
cation, due to its ability to understand context-dependent
sequences [12]. In our experiment, we use the simple bidi-
rectional LSTM (BiLSTM) [37] as the encoder with single
dimensional hidden size being 256.

• CNN was first used by [15] for sentence classification. In our
experiment, we use an adapted simple version of the CNN
model as the encoder. In order to control the experiment
so as to only examine the effect of word embeddings, the
CNN’s size is determined strictly. We experimented with
small, medium and large CNN variations that have the num-
ber of trainable parameters around 0.5x, 0.75x, 1.0x as these
of BiLSTM respectively. Our pilot study did not indicate per-
formance differences between the three variations and hence
the small CNN (number of filters 100, and 3 filter sizes: 2,3,4)
has been reported on account of efficiency considerations.

For common hyper-parameters, we train both downstream models
with an Adam optimiser (learning rate = 0.001), in 140 training
epochs, patience 5 for early stop, based on accuracy evaluated on
the development set. In addition, we apply dropout with 𝑝 between
0.2 and 0.5 across layers of the downstream networks to prevent
over-fitting.

4.3 Word Embeddings
Given a neural network model, the word embeddings are used as
the feature representations in the emebedding layer.

To keep the embedding layer relatively small, we reduce the vocab-
ulary by ignoring words that appear fewer than three times in total
within a dataset for non-character based word embeddings2. We
experimented using both the reduced vocabulary and full vocabu-
lary on some datasets. As no significant performance differences
were seen, the vocabulary reduction schema is applied in our ex-
periment, keeping efficiency in mind. Below is more information
on each word embedding choice in our experiment.

• Baseline: For the baseline, we simply define a randomly-
initialised trainable embedding layer with a dimension of
100 for encoding word inputs. Thus the baseline is not pre-
trained but learned from scratch with the rest of the down-
streammodel parameters. Hence, it is considered to study the

2This excepts ELMo and Char because they are character-based and also BERT because
it uses a pre-defined vocabulary in pre-training so we do not alter this.

impact that word embeddings have on performance when
learned from scratch or pre-trained.

• word2vec: We use the off-the-shelf word2vec embedding
pre-trained on Google News dataset, which yields vectors
with 300 dimensions.

• GloVe: There is a good list of commonly-used pre-trained
GloVe embeddings available online3. These embeddings vary
in size, and are pre-trained on a variety of datasets includ-
ing Wikipedia, Common Crawl4, and Twitter. In our exper-
iment, we choose the 50-300-dimension GloVe embedding
pre-trained on Wikipedia and Common Crawl (6B and 840B
tokens).

• FastText: Pre-trained FastTextmodels are available formany
languages5. Because our experimental datasets are limited to
English, we only choose the 300-dimension English version
of pre-trained FastText embedding.

• Character-level embedding (Char): In our experiment,
we define a CNN encoder for learning character-level word
embeddings from scratch. We include the character embed-
ding with the intention of exploring the performance differ-
ence when it is concatenated with the classic GloVe embed-
ding as opposed to standalone FastText.

• ELMo: Different sizes of pre-trained ELMo models are avail-
able online6. The original pre-trained model is selected in
our experiment considering its size and performance. The
linear weighted combination of the 3 layers of ELMo (i.e.,
character-based output, 1st LSTM output, 2nd LSTM output)
are configured with one output representation, as used in
the original ELMo paper [24]. Since ELMo requires more
memory and time as the input sequence’s length increases,
we set the maximum length of input sequence to be 1,000.
This decision is guided by the sample length distribution of
our selected datasets as in Figure 3, which shows that only
rare samples are longer than 1,000 words.

• BERT: Our experiment includes BERT for studying its ef-
fectiveness in text classification when being used as a fixed
feature extractor. In our experiment, we use the bert-base-
uncased version that consists of 12 layers, 12 attention heads
and hidden size being 768, totalling 110M parameters. Since
it is not used in a trainable way in our experiment, as sug-
gested by [31], we select the second-to-last layer instead of
the last layer of BERT as the feature representations (i.e., to-
ken embeddings) for the downstream encoders7. In addition,
as BERT only accepts input sequences with the number of to-
kens less than 510 8, we apply a truncation method inspired
by [26] and only keep the first 510 tokens of those training
samples that are beyond this length.

3https://nlp.stanford.edu/projects/glove/
4https://commoncrawl.org/
5https://fasttext.cc/
6https://allennlp.org/elmo
7We additionally experimented from the fourth-to-last (-4) layer to the last layer (-1)
using CNN on the SST-2 dataset. The results show -4, -3 and -2 slightly outperform -1.
8510 is 512 subtracting the [CLS] and [SEP] tokens

https://nlp.stanford.edu/projects/glove/
https://commoncrawl.org/
https://fasttext.cc/
https://allennlp.org/elmo


Table 2: Evaluation results: accuracy and macro-F1 for single-label datasets (20NewsGroup and SST-2). Values in bold are the
highest in their column. Where + denotes concatenation, G denotes GloVe (6B tokens), F denotes FastText, and the appended
number denotes the embedding dimension. 300s refers to the GloVe embedding with 840B tokens pre-trained on Common
Crawl. For example, G-100 means the off-the-shelf pre-trained glove.6B.100.

20NewsGroup SST-2
CNN BiLSTM CNN BiLSTM

Accuracy macro-F1 Accuracy macro-F1 Accuracy macro-F1 Accuracy macro-F1
Baseline 78.00±0.94 77.58±0.94 49.02±1.13 49.27±1.13 81.45±1.79 81.39±1.79 83.58±1.70 83.57±1.70
word2vec 82.67±0.85 82.14±0.87 62.45±1.09 62.43±1.09 82.14±1.76 82.07±1.76 84.09±1.68 84.02±1.68
G-50 79.98±0.90 79.44±0.91 69.03±1.04 68.98±1.04 80.78±1.81 80.75±1.81 83.03±1.72 83.00±1.73
G-100 81.03±0.89 80.28±0.90 72.80±1.00 72.58±1.01 81.47±1.78 81.40±1.79 84.15±1.68 84.07±1.68
G-200 82.95±0.85 82.26±0.86 75.47±0.97 75.16±0.98 82.80±1.73 82.76±1.73 85.04±1.64 85.02±1.64
G-300 82.61±0.86 81.85±0.87 74.24±0.99 73.97±0.99 82.03±1.76 81.98±1.77 84.88±1.65 84.86±1.65
F-300 82.16±0.86 81.57±0.88 62.37±1.09 62.40±1.09 81.44±1.79 81.30±1.79 84.33±1.67 84.31±1.67
F-300+G-300s 84.39±0.82 83.65±0.84 76.04±0.96 75.77±0.97 83.73±1.70 83.73±1.70 85.76±1.61 85.75±1.61
Char+G-100 82.11±0.87 81.31±0.88 79.31±0.91 78.78±0.92 82.46±1.75 82.41±1.75 84.79±1.65 84.75±1.65
ELMo 78.94±0.92 78.33±0.93 71.86±1.02 71.13±1.02 88.12±1.49 88.11±1.49 89.27±1.42 89.27±1.42
BERT 83.60±0.84 82.88±0.85 81.25±0.88 80.54±0.89 90.01±1.38 90.00±1.38 90.04±1.38 90.04±1.38

Table 3: Evaluation results: accuracy and micro-F1 for multi-label datasets (AAPD and Reuters). Values in bold are the highest
in their column and the abbreviations in the first column are equivalent to these in Table 2.

AAPD Reuters
CNN BiLSTM CNN BiLSTM

Accuracy micro-F1 Accuracy micro-F1 Accuracy micro-F1 Accuracy micro-F1
Baseline 35.30±1.90 66.82±1.88 34.77±1.90 65.26±1.90 74.40±1.40 80.97±1.26 55.11±1.59 60.50±1.57
word2vec 35.93±1.91 68.30±1.85 36.07±1.91 67.85±1.86 80.40±1.27 86.09±1.11 77.61±1.34 82.27±1.22
G-50 34.27±1.89 66.31±1.88 35.27±1.90 67.29±1.87 78.65±1.31 84.48±1.16 77.39±1.34 82.29±1.22
G-100 35.50±1.91 68.04±1.86 36.03±1.91 68.02±1.86 80.45±1.27 85.91±1.11 77.96±1.33 83.16±1.20
G-200 34.87±1.90 67.23±1.87 35.63±1.91 68.02±1.86 80.85±1.26 86.09±1.11 79.96±1.28 84.35±1.16
G-300 34.80±1.90 67.28±1.87 35.57±1.91 68.32±1.85 80.85±1.26 86.45±1.10 80.04±1.28 84.32±1.16
F-300 34.67±1.90 67.37±1.87 34.57±1.89 67.03±1.87 78.68±1.31 84.57±1.16 73.91±1.41 79.17±1.30
F-300+G-300s 35.93±1.91 69.19±1.84 36.07±1.91 68.42±1.85 81.54±1.24 86.87±1.08 80.48±1.27 84.55±1.16
Char+G-100 34.87±1.90 67.43±1.87 35.80±1.91 68.22±1.85 81.32±1.25 86.69±1.09 78.56±1.31 83.84±1.18
ELMo 34.77±1.90 67.25±1.87 31.53±1.85 62.69±1.93 79.13±1.30 84.99±1.14 74.67±1.39 80.39±1.27
BERT 36.27±1.92 68.35±1.85 35.77±1.91 67.48±1.87 81.00±1.26 86.23±1.10 79.89±1.28 84.90±1.15

5 RESULTS AND DISCUSSION
Based on the experimental components as described, we report the
evaluation results that are averaged by repeating each run three
times with different random seeds. For all datasets, the results are
evaluated using test set accuracy. In addition to accuracy, we also
report the evaluation on macro-F1 for single-label datasets and
micro-F1 for multi-label datasets. Table 2 and Table 3 present the
evaluation results for single-label and multi-label datasets respec-
tively. To gain a general sense of how each score in the tables is
comparable to another, we append the confidence intervals (CIs)
for each also. We use Wilson Score Interval [30] to compute the
confidence interval for each metric at the 95% level. For a cell score
𝑐 , its interval is calculated by 𝑐 = 𝑐 ± 𝑧

√
𝑐 (1−𝑐)

𝑛 , where 𝑛 is the
number of observations evaluated upon (equal to the number of of

test samples in our case) and 𝑧 is the constant (equal 1.96 for 95% CI).

Based on the evaluation results, we summarise several key findings
as follows:

5.1 Pre-trained vs non pre-trained
The baseline run (non pre-trained) differentiates itself from the
pre-trained ones where the embedding layer is initialised with pre-
trained weights before being trained along with the task-specific
datasets. When inspecting the baseline performance across the
datasets using CNN and BiLSTM, some interesting findings emerge.
To conduct a fair comparison, if looking at the baseline and G-100,
(both are 100 dimensional), overall we found the performance dif-
ference between baseline and the rest is positive but not substantial
in the SST-2 and AAPD datasets. However, the positive difference



becomes more pronounced for 20NewsGroup and Reuters. This
can possibly be attributed to the characteristics of the datasets in
terms of sample variance. It seems that pre-trained embeddings
such as G-100 gain a strong advantage over non pre-trained in
datasets like 20NewsGroup that contains varying samples of many
words. The advantage is less pronounced for short sequence dataset
such as SST-2, likely because non pre-trained can easily be trained
and catch up to a point where it offers similar features to the pre-
trained embeddings. The insight we share from here is that it is
better to initialise the embedding layer with pre-trained weights
than without in this kind of downstream classification tasks al-
though how much performance gain is largely determined by the
dataset characteristics.

5.2 Model architecture selection: CNN vs
BiLSTM

In our experiment, we applied CNN-based and BiLSTM-based mod-
els for sequence classification. The experimental results do not
reveal a general advantage of one over another. Instead, the per-
formance impact of model architectures depends on the dataset
characteristics.

First of all, observing the results in Table 2 and Table 3, we see that
BiLSTM exhibits a slight advantage over CNN on SST-2. However,
CNN overtakes BiLSTM quickly as the document length and vari-
ance of the datasets increase. For 20NewsGroup, CNN achieves a
significant improvement over BiLSTM. Motivated by these observa-
tions, further investigation into the relationship between the dataset
sample length and choice of model architecture was conducted. For
this experiment, datasets were split into several partitions by sam-
ple length. Table 4 presents the statistics of 20NewsGroup and
AAPD splits we selected for this experiment. As seen, each of the
dataset is split into short, medium and long partitions by length
from the original training, development, and test sets accordingly.
Next, we select G-100 and ELMo for training and evaluating each
split. Table 5 shows the evaluation scores of CNN and BiLSTM
on the three splits using G-100 and ELMo in the embedding layer.
These results go against our hypothesis that BiLSTM may gain
an advantage in short splits. However, Table 5 indicates that CNN
outperforms BiLSTM in all circumstances no matter whether the
samples are shorter or less distributional and they both generally
perform better on long-sample splits than short ones. This bring us
to the next stage of qualitative analysis of the impact that dataset
traits have on CNN or BiLSTM.

Analytically, the short samples in the datasets are just titles (news ti-
tles for Reuters, news group titles for 20NewsGroup, short abstracts

Table 5: Performance of 20NewsGroup andAAPD splits with
G-100 and ELMo

20NewsGroup with G-100
CNN BiLSTM

Acc. Macro-F1 Acc. Macro-F1
S-short 0.7207 0.6906 0.4598 0.4327

S-medium 0.7837 0.7724 0.5542 0.5437
S-long 0.7878 0.7634 0.5386 0.4948

20NewsGroup with ELMo
CNN BiLSTM

Acc. Macro-F1 Acc. Macro-F1
S-short 0.6586 0.6268 0.5622 0.5424

S-medium 0.7474 0.7301 0.6351 0.6336
S-long 0.7584 0.7304 0.7014 0.656

AAPD with G-100
CNN BiLSTM

Acc. Micro-F1 Acc. Micro-F1
S-short 0.3058 0.6268 0.3027 0.5997

S-medium 0.3542 0.6642 0.3325 0.6279
S-long 0.3575 0.6877 0.3432 0.6545

AAPD with ELMo
CNN BiLSTM

Acc. Micro-F1 Acc. Micro-F1
S-short 0.3052 0.6162 0.2562 0.5623

S-medium 0.3431 0.6599 0.3027 0.597
S-long 0.3525 0.6677 0.3098 0.616

for AAPD) instead of context-flow alike sentences, see Table 6. This
indicates that there is no context in the sequence to help identify
which label the sequence is, which may explain why LSTM does
not do well even in short samples of datasets of this kind.

The primary lesson we learn from here is that it is not proper to say
LSTM is good at short sequence classification. Instead, we need to
choose CNN or LSTM based on the characteristics of datasets. As we
see in Table 2, LSTM outperforms CNN in SST-2 due to it is sentence-
level sentiment analysis (the sequential context does help decide the
sentiment category in this case). However, for document datasets
that have similar characteristic like AAPD and 20NewsGroup, LSTM
does not add benefit to the performance as opposed to CNN.

5.3 Impact of different classic embeddings
In our experiment, word2vec, GloVe, and FastText are the three
classic embeddings for comparative analysis. Taking a closer look

Table 4: Statistics of 20NewsGroup and AAPD splits by length

20NewsGroup AAPD
# train/dev/test len_avg. len_std. # train/dev/test len_avg len_std.

S-short 3017/754/2510 84.64 27.19 15988 / 1000 / 1612 92.23 26.60
S-medium 3017/754/2510 178.21 31.95 15988 / 1000 / 1612 157.78 16.88
S-long 3017/755/2512 587.97 816.64 15990 / 1000 / 1614 240.35 41.06



Table 6: Examples of short samples from Reuter, AAPD,
20NewsGroup that show that the short sequences are
not context-indicative of for which label(s) the sequences
should fall into. The n-grams in bold are very indicative of
which label the short sequences fall into, which is the fea-
ture that CNN captures well.

Short-length sample Label desc.

Reuter
CHARTER FEDERAL,
JEFFERSON SAVINGS
AGREE TO MERGE.

news topics, e.g.,
this sample is
about politics

AAPD
this article summarizes
recent trends in
mobile biometrics

paper topics, e.g.,
this sample is about
mobile biometrics

20NewsGroup

From: kwgst+@pitt.edu
(Mr. Someone)
Subject: modem question
Article-I.D.: blue.9061
Organization: pre-EE
Lines: 2

topics, e.g.,
this sample is
about hardware

at word2vec and GloVe variants, Figure 4 plots the performance dif-
ference between word2vec and GloVe with CNN and BiLSTM. We
can see from the plots that, overall, GloVe has an advantage over
the classic word2vec because its 100-dimension vector achieves
almost the same performance as the 300-dimension word2vec. For
GloVe, the performance increases as the dimensions increase ini-
tially, but drops gradually as it continues to increase to 300. When
selecting GloVe for a general classification dataset, it is good to use
its 100-200 (6B tokens) dimensional pre-trained embeddings.
In addition to word2vec and GloVe, we also conduct experiments
for FastText and character-level embeddings. These two types of

embeddings share the common feature of capturing subword infor-
mation.When using the 300-dimensional FastText as the standalone
embedding, there is no evidence to indicate that FastText outper-
forms GloVe. However, it does achieve overall increased scores
when it is used in combination with GloVe. As seen in Table 2 and
Table 3, the values in bold show that this embedding combination
achieves the highest scores for most situations. Two concerns arise
for using this combination in real-world applications, however.
On one hand, when taking into account the confidence intervals,
the increased scores achieved by the combination are not signifi-
cantly greater than most other standalone word embeddings such
as word2vec and G-200. On the other hand, the combination largely
increases the embedding size (6 that of G-100, and 3 times that of
G-300 and F-300) and thus need to be used carefully despite its
marginal increased scores as seen in our experiment.

For character-level embedding (Char), we find overall the per-
formance of its concatenation with the 100 dimensional GloVe
(Char+G-100) is marginal or even worse (for AAPD) as compared
to the standalone use of GloVe (G-100). As a suggestion, it is better
to focus on downstream model selection based on dataset charac-
teristics than to concatenate sub-word pre-trained embeddings for
performance gain.

5.4 Classic embeddings vs contexualised
embeddings

There are two types of contexualised embeddings (ELMo and BERT)
studied in our experiment. The results indicate that for SST-2, ELMo
and BERT essentially reach equivalent performance performance
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Figure 4: Different embeddings (word2vec and GloVe) versus macro (20NewsGroup and SST-2) and micro (AAPD and Reuters)
-F1 with CNN and BiLSTM.



no matter whether CNN or BiLSTM is used. However, BERT’s
advantage over ELMo becomes more obvious in 20NewsGroup,
Reuters and AAPD. Compared with classic word embeddings, ELMo
and BERT achieve a strong improvement over classic ones for the
sentence-level dataset SST-2. This improvement is not observed in
the remaining datasets and even in some cases ELMo harms the
performance such as for 20NewsGroup and AAPD.

Analytically, there may be two causes to point out. First, for a docu-
ment dataset like 20NewsGroup, a truncationmethod for shortening
the input sequence is applied for both ELMo and BERT, due to their
restrictions on input length9. This means that parts of a document
longer than the allowed length are omitted, thus potentially leading
to the loss of important information in the document. Second, the
two embeddings are non recursively pre-trained only on limited-
length chunks of a corpus so it may lack the expression of global
semantics of a long document. This motivates a rethink of how a
long document should be represented by the contextualised embed-
dings that perform well on relatively short sequences. Among the
work behind this motivation, Transformer-XL [33] may serve as
a good reference to the community for document representation
learning in the future.

6 CONCLUSION AND FUTUREWORK
This paper introduces a comparative study of word embeddings
using CNN and BiLSTM as the downstream encoders for text classi-
fication. Tomake the work as comprehensive as possible, we studied
both classic word embeddings (such as word2vec, GloVes and Fast-
Text) and two mainstream contextualised embeddings (ELMo and
BERT). In addition, we selected four benchmarking classification
datasets for exploring how the selection of downstream model and
word embeddings affects classification performance on datasets
with different characteristics. Finally, we summarised several key
findings based on our comparative study. For example, as an overall
suggestion based on the experimental results (with confidence in-
tervals), contextualised embeddings are matched well with BiLSTM
for SST-2-like classification datasets, while CNN collaborates well
with classic embeddings for document datasets like 20NewsGroup,
AAPD, and Reuters. Although the work is offered to provide some
evidence-based guidance for practitioners selecting word embed-
dings for text classification in deep models, there is still quite a list
of work we seek to explore in the future, as summarised below.

• It remains a research question on how to embed a long doc-
ument for improving classification performance, especially
when using pre-trained contextualised word embeddings,
such as ELMo, BERT, XLNet [33], RoBERTa [19], etc.

• One limitation of the study is that the selected datasets are all
in English. It would be interesting to conduct a similar study
on other languages such as Chinese, or French [5]. Further
study can help to explore whether there are any performance
alignments concerning embeddings that are pre-trained on
different linguistic corpora for text classification.

9This may not true for ELMo with an allowed maximum length 1000 since rare training
samples in our selected datasets are longer than that.

• It would be interesting to investigate these embeddings on
other classification models. This could be beyond neural net-
work models and utilise traditional machine learning meth-
ods (ML) such as Naïve Bayes, SVM, etc. The traditional ML
approaches are more efficient in terms of training and infer-
ence than the deep models used as the downstream encoders.
Hence, it may be interesting to explore the tradeoff between
the efficiency reward and the likely loss of performance.
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