
Explicit Modelling of Resources for Multi-Agent MicroServices
using the CArtAgO framework

Extended Abstract

Eoin O’Neill
University College Dublin

eoin.o-neill.3@ucdconnect.ie

David Lillis
University College Dublin

david.lillis@ucd.ie

Gregory M. P. O’Hare
University College Dublin
gregory.ohare@ucd.ie

Rem W Collier
University College Dublin

rem.collier@ucd.ie

ABSTRACT
This paper describes the first agent programming language ag-
nostic implementation of the Multi-Agent MicroServices (MAMS)
model - an approach to integrating agents within microservices-
based architectures where agents expose aspects of their state as
virtual resources, realised as CArtAgO artifacts, that are externally
accessible through REpresentational State Transfer (REST).

KEYWORDS
agent programming; BDI agents

ACM Reference Format:
Eoin O’Neill, David Lillis, Gregory M. P. O’Hare, and Rem W Collier. 2020.
Explicit Modelling of Resources for Multi-Agent MicroServices using the
CArtAgO framework. In Proc. of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
Microservices are increasingly seen as an important innovator in
software design. They champion the decomposition of monolithic
systems into loosely-coupled networks of services [17] that are nec-
essary to deliver internet-scale applications [7]. This has the effect
of reducing the complexity of many of the components, but comes
at the cost of increasing the complexity of deployment [16]. How-
ever, this challenge has been met through the rise of DevOps [2]
and Continuous Software Engineering methods [11].

The rise of microservices presents an opportunity for Multi-
Agent Systems (MAS) research. As is illustrated in [18], there is a
strong affinity between the principles of microservices and MAS
that can be exploited to deliver innovations, both in terms of the use
of MAS technologies with microservices and the use of microser-
vices technologies with MAS. This affinity is reinforced in [14],
which argues that microservices can be used to facilitate agility of
development for agent-based Internet of Things (IoT) systems. This
view is further reinforced in [10], which argues that microservices-
based IoT systems can be modelled as agents, and in [9], which
presents a multi-agent trust model for IoT.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

This paper builds on previous work that introduced the Multi-
Agent MicroServices (MAMS) model [18]; a model that promotes a
view of agents as hypermedia entities whose body includes a set of
virtual resources that can be interacted with using REpresentational
State Transfer (REST) [8] and can be deployed as microservices.
Overall, the work has three main objectives: to facilitate the seam-
less deployment of Multi-Agent Systems (MAS) within microser-
vices ecosystems; to exploit modern industry tools to enhance the
deployment of MAS; and ultimately, to enable the development of
an emerging class of systems known as Hypermedia MAS [3][4].

2 MULTI-AGENT MICRO-SERVICES
As a concept, MAMS stems from the view that organisations com-
bine outward-facing customer service agents, while the internal
worker agents are hidden. The main impact of this technology
is that it is now possible to develop packaged components with
agent-level reasoning as standard practice. This would allow each
component to be packaged as a Docker image and downloaded for
use whenever necessary. Potentially, multiple agent-based contain-
ers hosted on a shared Docker machine could automatically become
aware of each other through agent communication.

The goal of MAMS is to replicate the successes gained through
applying the web model to services by applying them to MAS. For
example, applying the principles of REST [8] to MAS can simplify
interactions between agents and reduce the role of agent platforms
as services become an integral part of the agent. This facilitates
the move to simpler models, with URIs providing a simple and
unambiguous global naming system for agents. As is illustrated in
Figure 1, agents are associated with a set of virtual resources that
are exposed as RESTful entities allowing seamless interaction with
other agent (A) and non-agent (S) services.

Linking agents to virtual resources can have multiple applica-
tions. For example, they could represent the information that an
agent needs to complete its internal or shared goal. or aspects of an
agent’s state that it wishes to share with other agents in order to
influence community behaviour or to attract other agents in order
to engage in collaborative activities.

A key benefit accruing from MAMS is the ease with which agent
reasoning can be embedded into real-world scenarios. This lends
itself the ability to monitor interactions between given entities
and that service. This can imbue the service with introspective
capabilities, making it aware of any interactions that may cause



issues. In such scenarios, an agent can reason about the failure and
select a relevant course of action to resolve the problem.

A benefit of this for the MS community is the fact that the idea
of social interaction between small entities has been extensively
studied by the MAS community. This allows many of these mod-
els to be implemented by the MS community in order to manage
interactions between individual services in the achievement of a
common goal. As described in [1] and [15], social norms become a
key part of implementing a system that is composed of individual
components. They provide a baseline of interaction between enti-
ties so that the system moves along a path that will eventually lead
to the completion of the common system goal.

3 THE PROPOSAL
A core goal of the work presnted in this paper is the explicit mod-
elling of resources that can be manipulated by agents. CArtAgO
[13] introduces the concept of an artifact as environment-level en-
tities that can be manipulated directly by agents. In this paper, we
model resources as artifacts. Specifically, each agent is associated
with an agent body, consisting of a set of CArtAgO artifacts that
model the virtual resources associated with each agent. As is illus-
trated in Figure 2, a base artifact is provided as a shared base to
which each resource artifact is linked and this in turn is linked to
a shared webserver artifact that exposes the resources over HTTP.

Modelling resources explicitly as artifacts allows for clearly-
defined semantics that includes both a description of how each
HTTP verb will affect the state of the artifact modelling the associ-
ated resource and a specification of the interface between the agent
and the resource, which is defined in terms of the operation, ob-
servable property, and signal concepts of CArtAgO. This engenders
two models of resource management from the agents perspective:

• Passive Resource Management: As the artifact receives
each request, depending on the HTTP verb used, the agent re-
ceives a CArtAgO signal indicating the nature of the update
that was applied. This allows the agent to act in response to
expected changes in the resources, but does not affect the
speed by which the response returned to the system mak-
ing the request. Additionally, the agent is also able to make
changes to the state of the resources through a suite of in-
ternal operations. This allows rapid interaction between the
resource and the entity making the request, whilst ensuring
that the agent is still informed about the state of each re-
source. A key factor of this method is the fact that although

Figure 1: Agent/Service Integration

Figure 2: Modelling a RESTful agent body as artifacts

the agent may have control over the resource, the resource is
open to the world as an endpoint. This permits any service
(or agent) to make a request and receive a timely response
from this entity, something that may not be possible when
you introduce the mentalistic aspect of deliberation that is
associated with agents.

• Active Resource Management: Once a valid HTTP re-
quest is made of an artifact, a CArtAgO signal is generated
based on the type of HTTP verb passed to the agent. For
GET and DELETE requests, the request body is ignored. Con-
versely, the body is included for POST and PUT requests.
This event is passed to the agent which then deliberates to
decide on the correct response. If deemed acceptable, the
agent executes the “accept” operation on the artifact. The
request is then removed from the event queue and processed.
A response detailing that the request made was handled cor-
rectly is issued. In the case where the request was rejected
by the agent, the “refuse” operation is invoked, issuing a
response to the requester that the request was denied.

For validation, a prototype has been developed that has been
integratedwith the ASTRA agent programming language [6][5][12].
The prototype and some examples are available at Gitlab.com1.

4 CONCLUSIONS
This paper presents a novel approach to the implementation of
MAMS that embraces current industry best practice and technology
stacks and introduces the idea of virtual resources as a mechanism
for facilitating the seamless integration of agents intomicroservices-
based architectures. Through this, we gain access to a wealth of
technologies and experience in how to deploy systems at scale while
at the same time situating those agents in a larger web-enabled
ecosystem. From a MS perspective, the benefits lie in the fact that
they can now employ a level of reasoning within their systems, but
also take advantage of the amount of research generated by the
community since its inception.

ACKNOWLEDGMENTS
This research is funded under the SFI Strategic Partnerships Pro-
gramme (16/SPP/3296) and is co-funded by Origin Enterprises Plc.

1https://gitlab.com/mams-ucd



REFERENCES
[1] Estefania Argente, Vicente Julian, and Vicente Botti. 2006. Multi-agent system

development based on organizations. Electronic Notes in Theoretical Computer
Science 150, 3 (2006), 55–71.

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices ar-
chitecture enables devops: Migration to a cloud-native architecture. Ieee Software
33, 3 (2016), 42–52.

[3] Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. 2018. Engineering World-
Wide Multi-Agent Systems with Hypermedia. In 6th International Workshop on
Engineering Multi-Agent Systems (EMAS 2018).

[4] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessandro Ricci,
and Antoine Zimmermann. 2019. A Decade in Hindsight: The Missing Bridge
Between Multi-Agent Systems and the World Wide Web. In Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 1659–
1663.

[5] RemW Collier, Seán Russell, and David Lillis. 2015. Reflecting on agent program-
ming with AgentSpeak (L). In International Conference on Principles and Practice
of Multi-Agent Systems. Springer, 351–366.

[6] Akshat Dhaon and Rem W Collier. 2014. Multiple inheritance in AgentSpeak
(L)-style programming languages. In Proceedings of the 4th International Workshop
on Programming based on Actors Agents & Decentralized Control. 109–120.

[7] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. 2017. Microservices: How to make your application
scale. In International Andrei Ershov Memorial Conference on Perspectives of System
Informatics. Springer, 95–104.

[8] Roy Thomas Fielding. 2000. REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation. http://www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm

[9] Kalliopi Kravari and Nick Bassiliades. 2019. StoRM: A social agent-based trust
model for the internet of things adopting microservice architecture. Simulation
Modelling Practice and Theory 94 (2019), 286–302.

[10] Petar Krivic, Pavle Skocir, Mario Kusek, and Gordan Jezic. 2017. Microservices as
agents in IoT systems. In KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications. Springer, 22–31.

[11] Rory V O’Connor, Peter Elger, and Paul M Clarke. 2017. Continuous software
engineering-A microservices architecture perspective. Journal of Software: Evo-
lution and Process 29, 11 (2017), e1866.

[12] Alessandro Ricci, Rafael Hector Bordini, Jomi F Hubner, and Rem Collier. 2018.
Agentspeak (er): An extension of agentspeak (l) improving encapsulation and
reasoning about goals. In The 17th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2018). International Foundation for Autonomous
Agents and MultiAgent Systems (IFAAMAS).

[13] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. 2006. CArtAgO: A frame-
work for prototyping artifact-based environments in MAS. In International Work-
shop on Environments for Multi-Agent Systems. Springer, 67–86.

[14] Claudio Savaglio, Maria Ganzha, Marcin Paprzycki, Costin Bădică, Mirjana
Ivanović, and Giancarlo Fortino. 2020. Agent-based Internet of Things: State-of-
the-art and research challenges. Future Generation Computer Systems 102 (2020),
1038–1053.

[15] Munindar P Singh andAmit KChopra. 2017. The internet of things andmultiagent
systems: Decentralized intelligence in distributed computing. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 1738–
1747.

[16] Johannes Thönes. 2015. Microservices. IEEE software 32, 1 (2015), 116–116.
[17] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena Sala-

manca, Rubby Casallas, and Santiago Gil. 2015. Evaluating the monolithic and
the microservice architecture pattern to deploy web applications in the cloud. In
2015 10th Computing Colombian Conference (10CCC). IEEE, 583–590.

[18] Rem W Collier, Eoin O’Neill, David Lillis, and Gregory O’Hare. 2019. MAMS:
Multi-Agent MicroServices. In Companion Proceedings of The 2019 World Wide
Web Conference. ACM, 655–662.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

	Abstract
	1 Introduction
	2 Multi-Agent Micro-Services
	3 The Proposal
	4 Conclusions
	Acknowledgments
	References

