
A HOTAIR Scalability Model

A. Mur, L. Peng, R. Collier, D. Lillis, F. Toolan, J. Dunnion

Department of Computer Science,
University College Dublin (UCD), Belfield, Dublin 4, Ireland.
{ mur.angel, liu.peng, rem.collier, david.lillis, fergus.toolan,

john.dunnion}@ucd.ie

Abstract. This paper describes a scalable mathematical model for
dynamically calculating the number of agents to optimally handle the
current load within the Highly Organised Team of Agents for
Information Retrieval (HOTAIR) architecture.

1 Introduction

Indexing the World Wide Web is a complex task that requires a software
infrastructure that has the ability to crawl through millions of web pages, extracting
their content, and storing representations of that content in a form that is most
appropriate for retrieval. Traditionally, research in this area has focused upon the
development of information retrieval techniques that improve (1) the location and
extraction of content, and (2) the representation of that content in forms that engender
higher levels of precision and recall.

While this area of research remains one of the key research areas in Computer
Science, it is becoming increasingly acknowledged that the design of the architecture
in which these techniques are embedded is equally important. In fact, a recent news
article on the success of Google made the point that “many people consider the
company's operations expertise more valuable than the actual search algorithms that
launched the enterprise” [15]. This is reflected in the fact that Google have been able
to develop a robust and reliable distributed search architecture [1] that has cost
millions of dollars, rather than the tens of millions of dollars that it has cost other
competitors.

The design of robust and reliable search engine architectures that can scale
effectively over large numbers of machines is a significant engineering problem. This
paper presents one approach to solving this problem through the use of intelligent
agents [32]. Specifically, it introduces the HOTAIR Search Engine architecture, an
extensible and scalable architecture for the discovery, retrieval and indexing of
documents from multiple heterogeneous information sources.

Within the HOTAIR architecture, extensibility is engendered through the design of
an architecture that provides support for: (1) the plugging in of multiple indexing
strategies such as the Vector Space Model [25] and the Extended Boolean Model
[26]; and (2) the ability to rapidly and seamlessly integrate diverse sources of
information. This requires the use of an open infrastructure that is able to dynamically

adapt its configuration to seamlessly integrate new techniques and information
sources into the system.

Conversely, scalability is engendered through the design of an architecture that can
be easily expanded as requirements increase. Typically, this will take the form of
increasing the number of machines on which the architecture is deployed. Underlying
this is the assumption that adding more machines will deliver an improvement in
performance of the system. However, achieving this improvement is often a non-
trivial task for a system administrator. It often requires detailed knowledge of both the
expected load that will be placed on the system, and the most appropriate
configuration for handling that load. Their task is further complicated by the fact that
the actual load on such a system will change over time as the number of searches
increases and decreases. This can result in the application undergoing significant
periods of non-optimal performance. Thus, supporting scalability requires a solution
that is flexible, aware of the current level of demand, and which can dynamically
adapt its configuration to reflect both changes in demand and the availability of
resources.

The key characteristic that the implemented architecture must conform to is the
ability to dynamically adapt its configuration as requirements, demand, and resources
change. These characteristics are synonymous with the types of system that agent
technologies are most suited to. This has led to the development of the HOTAIR
Document Indexing System, a multi-agent system that has been designed to adapt its
configuration in response to changes in demand, and which supports the seamless
integration of new techniques and information sources.

Scalability is an important, yet under-researched, aspect of agent platforms. The
dynamics of multi-agent systems are hard to predict and the number of agents in
large-scale distributed applications can vary considerably over time.

This paper aims to implement a mathematical model that can be used to estimate
the number of agents required based on the available resources.

2 Related Work

The first Internet search engines began to appear in the mid-1990s. One of the first
was the World Wide Web Worm (WWWW) [18]. Since their emergence, the main
focus of research in this area has been on the development of better information
retrieval techniques. Perhaps the most successful of these has been PageRank, the
information retrieval technique that underpins the Google search engine [5].

Traditionally, the implementation of search engines, such as Google, was based on
cluster-based architectures, with large numbers of low-cost servers located at one or a
few locations and connected by high-speed LANs [4]. Their robustness and
reliability is commonly achieved through the replication of services across many
different machines, and the implementation of an infrastructure that automatically
detects and handles failures [1].

Some researchers, such as ODISSEA [29], have explored the potential of Peer-to-
Peer technology in the design of a next generation of distributed search architectures.
Others have focused on the concept of meta-search [17][27], focusing on the
definition of strategies for combining results from numerous search engines.

Another approach to Internet Search is through the use of software agents [13] [14]
to perform tasks such as discovering, indexing and filtering documents and routing
relevant information to users. By far the most prominent agent-based approach is
through the use of single agent systems, which act as assistants that do all the tasks by
themselves. For example, POIROT [24] is a web search agent based on relevance,
LETIZIA [16] is an agent that assists Web browsing, and CITESEER [2] is an
autonomous citation index finding relevant research publications on the WWW.

In contrast, multi-agent systems are decentralized and distribute tasks among a
number of agents. ACQUIRE [9], is an example of a mobile agent-based search
engine for retrieving data from heterogeneous, distributed data sources. In contrast,
AMALTEA [19] is a search tool that discovers and filters information using a multi-
agent evolving ecosystem.

Multi-agent systems are highly dynamic. The number of agents can scale up or
down to ensure optimal performance [20] [3]. Scalability is also a term that is often
used to refer to extensible functionality. SAIRE [21] is a scalable agent-based
information retrieval engine because it supports heterogeneous agents.

The problem of scalability and some scaling techniques are described in [31]. An
overview of multi - agent system scalability and a labor market application to model
scalability can be found in [28].

3 The HOTAIR Indexing System

The HOTAIR Document Indexing System has been implemented using Agent
Factory [8], a cohesive framework that delivers structured support for the
development and deployment of multi-agent systems, which are comprised of agents
that are autonomous, situated, social, intentional, rational, and mobile [7].

A diagrammatical overview of the agents that make up the system architecture is
presented in figure 1. The actual number of agents that exist at any time varies
depending upon the demand on and the resources available to the system. In addition,
these agents are deployed over a number of different agent platforms that reside on
different physical machines.

The creation of agents is a service that is provided by the Platform Manager (PM)
system agent. Each agent platform contains a PM, which is responsible for handling
requests to create more agents. Upon receipt of a request, a PM negotiates with its
counterparts to decide on which machine(s) the requested agent(s) should be created.
If there are insufficient resources to create all of the requested agent(s), then the PM
agents can either refuse or partially fulfil the request.

3.1 The HOTAIR Agents

Within the HOTAIR architecture, the Data Gatherer (DG) agents are charged with
the task of analyzing information sources. In the current version of the architecture,
two types of DG have been implemented: the Collection DGs are used to process
documents stored within static Document Collections, while the Web DGs are, in
essence, web spiders that are crawling the World Wide Web. All DG agents follow a
common behaviour, they search their assigned information source, discovering new

documents and downloading them into a temporary cache. Internally assigned
document identifiers are added to an internal queue and the Broker agent is informed
of the existence of new documents.

Fig. 1. The HOTAIR Document Indexing System

The Broker agent is responsible for monitoring the status of the DG’s. This status
is currently represented as the size of each DG’s document queue. Periodically, the
Broker requests a status update from each DG. Whenever a DG’s status changes, the
Broker reviews how many Document Agents (DAs) to assign to it. If the Broker
decides that there are not currently enough DAs, then it asks the local AMS agent to
create more DAs. As discussed earlier, this request may be refused. Thus, in cases
where the Broker has an insufficient number of DAs, the Broker assigns DAs to DGs
that are most in need of additional DAs. When significant disparities exist, the Broker
re-assigns some existing DAs to different DGs.

Document Agents (DAs) encapsulate the workflow of the system, that is, they
know how to get a document indexed. Currently, indexing a document involves: (1)
getting a document from the DG, (2) getting the document translated by a Translator
agent, and (3) getting the document indexed by an Indexer agent. Once assigned to a
DG, each DA follows the prescribed workflow until either the DG has no more
documents or the Broker re-assigns it to another DG. Once an assignment finishes,
the Broker either re-assigns the DA or instructs it to terminate itself.

The Translator agents are responsible for translating documents from their native
format into an internal format, known as the Hotair Document Format (HDF), that is
understood by the Indexers. Each Translator specializes in translating one type of
document. Currently supported formats include: Portable Document Format (PDF),
HTML, Postscript (PS), and plain text. Should demand for a translation service
become excessive, a Translator is able to use the Agent Factory cloning capability to
clone itself [30]. Excessiveness is currently measured by demand passing a prescribed

threshold. Once created, the load is spread between the original and the clone. The
clone is terminated if demand falls below a second lower threshold.

The Indexer agent is responsible for indexing documents. Eventually, HOTAIR
will support numerous indexing strategies, however, currently it supports only the
Vector Space Model. As with the Translators, Indexers are able to clone themselves
should demand pass a given threshold.

The final set of agents is the Query agents. These agents query the document index
on behalf of the user. They provide an agent-oriented interface to the HOTAIR
system. In future versions of the architecture, these agents will perform a number of
additional activities, including query expansion and user modelling.

4 HOTAIR Scalability Model

The HOTAIR architecture specifies three key points of adaptation: (1) through the
cloning of Indexer Agents, (2) through the cloning of Translator Agents, and (3)
through the creation of Document Agents.

Document Agent Scalability impacts the speed at which documents are indexed
[22]. For a collection of documents, there will be a specific number of Document
Agents, for which the document indexing speed is optimal. These agents process this
collection more efficiently than other number of agents.

The Broker agent decides the optimal number of Document Agents to process a
collection of documents. It uses a formula that represents a Scalable Document Agent
Model.

 4.1 Scalability model using Multiple Linear Regression

There are two main features of a document collection or group of documents : their
size (total number of occurrences i.e. total number of words with repetition) No and
the number of documents Nd. For each collection, it is possible to explore manually
which is the optimal number of agents Nda that performs best in terms of time.

The objective of the experiment presented below is to find an equation that allows
us to calculate automatically the optimal number of agents from any group of
documents.

A solution can be found using a Multiple Linear Regression (MLR) [23]. MLR is a
method used to model the linear relationship between a dependent variable and one or
more independent variables or predictor variables. MLR is based on least squares: the
model is fit such that the sum of squares of differences of observed and predicted is
minimized. A general model expresses the value of a variable Y as a linear function
of one or more variable Xi and an error term: Y = b0 + b1 X1 +…..+ bk Xk + where ε ε
~ N(0,σ

2
). b0 is a regression constant, bi is the coefficient on the i

th
 predictor variable

Xi, k is the number of variables and is the error term.ε
If we have n experiences, the model Yj = b0j + b1j X1j +…..+ bkj Xkj + εj, (j=1…n),

can be compactly written using a matrix notation Y=XB+E where

Y= ()Yn,........Y2,Y1 ; B= ()bk,........b2,b1 ;

 E= ()εεε n,........2,1 ; X=

Xkn..X n11

.....

.....

X 2k..X121

X 1k..X111

; (1)

B values can be estimated using the equation Bs= (X’X)-1X’Y.

4.2 Scalable Document Agent Model

We validate the MLR scalability model using Document Agents. Our response would
be the optimal number of Document agents Nda and our predictor variables Nd and No

: Nda = f (Nd, No).The optimal number, Nda, represents the number of a group of
Document Agents that process documents quicker than other groups for every
combination (Nd , No). The best group was chosen analysing time processing t(Nd , No)

of 50 agent groups from 1 agent to 50 agents. Every t(Nd , No) was calculated several
times and Nda is the integer nearest the mean of the results.

The results were obtained using 3 document collections, each of which contained
1000 documents. The first two collections are subsets of the Cranfield and Med
collections, while the 3

rd

 collection is comprised of single word documents (i.e. one
word per document). This collection is unusual but necessary to get a general model
valid for any kind of document.

The table 1 shows a selection from n=30 observations of Nda from different
combinations (Nd , No). The n observations have been selected independently of one
another.

Nd No Nda

………. ………. ………
1 26 1
50 227 7
100 6411 15
600 39404 24
1000 65454 32
1000 1000 18
……….. ……….. ……….

Table 1: Table of the different combination (Nd , No, Nda).
The model found is : () No×Nd×b3+Ndln×b2+Nd×b1+b0=Nda where b0 =

1.6563; b1 = -0.0097; b2 = 3.5143; b3 = 2.3364e-007. The Figure 2 shows a 3D
representation of the model.

Fig. 2: 3D representation between the Optimal DAs number and the occurrences and
documents number.

Table 2 shows the parameters used to validate the model. A Fisher test [23] is used
to explain the model utility and a coefficient of correlation R is used to calculate the
explanatory power of the regression (2).

R F – ratio Significant
--
0.9671 F = 110.8083 1%

Table. 2: Validation of the model

 R =
Nda-Nda

Nda-N̂da ; F =
() ()

() ()N̂da-Nda 2k

Nda-N̂da
21-k-n

Σ

Σ
; (2)

Ndaˆ : fitted values, Nda : mean of the Nda observations, Nda : observations

The value of R compared with the value 1 suggests that the chosen model has been
very successful in relating Nda to the predictors. The Fisher test (F-ratio) shows that
we have a significant model and it means there is a useful linear relationship between
Nda and at least one of the predictors.

A Student test [23] (t-ratio Ti =bi / SD(bi) where SD is the standard deviation of
bi) was used to determinate if all the coefficients of the predictor variables are useful.

Term b1 b2 b3

Significant * ** **

Table. 3: ** means very significant , * significant.

The Student test shows that all our coefficients are useful. Consequently, we have a
significant model with the minimum number of predictors.

4.3 Discussion

The model found represents a general view of how the Document Agent community
scales as the number of documents to be process changes.

A document for any quantity of occurrences needs one DA always. From a
collection of 5 documents the number of agents begins to change in relation to the
number of occurrences.

The 3D graph shown in figure 2 shows that the optimal DAs number increases
when the documents and occurrences number increases. Document number is more
important than the occurrence number. But both are significant from the Student test.

In practice the optimal number of agents is an integer, consequently the estimated
float value from the model is rounded to the nearest integer.

This model for documents uses the number of occurrences No like a predictor. Due
to the high correlation between the No and the number of bits of each document Nb,
other similar model could be found using Nd and Nb instead of Nd and No. This new
model should be better for indexing web pages et/or documents dynamically. Nd and
Nb can be obtained before processing the documents.

5 Conclusions / Future Work

This paper presents a Document Agent Scalability model for the HOTAIR
architecture. This architecture is able to dynamically reconfigure itself to reflect
changes in demand through either the creation of additional DAs or through the
cloning of Indexer or Translator agents.

The model allows us to study HOTAIR Scalability and automatically gives the
optimal number of DAs for any collection of documents. The performance of the
HOTAIR architecture improves from a priori knowledge of the optimal number of
agents using a model. The Broker agent assigns to the system the optimal number of
Document Agents to process a collection of documents.

It is our intention to use the same procedure to build a Scalable Model for other
types of HOTAIR agents, namely: Indexer Agents and Data Gatherer Agents.

While these experiments are based on a simplified HOTAIR Document Indexing
System, we believe that the results are still valid. In particular, it would seem sensible
to assume that, once the optimal number of DAs has been reached for a given indexer,
then performance can only be improved by adding another indexer.

References

1. Barroso, L.A, Dean, J., and Holzle, U., Web Search for a Planet: The Google
Cluster Architecture, in IEEE Micro, 23(2):22-28, 2003.

2. Bollacker k. ; Lawarence, S; Giles C.L.: Citeseer: An Autonomous Web Agent for
Automatic Retrieval and Identification of Interesting Publications, Agents’98, 2

nd

International ACM Conference on Autonomous Agents, 116. 1998.
3. Brazier, F., Van Steen, W.: On MAS Scalability. Second International Workshop

on Infrastructure for Agents, MAS and Scalable MAS. 2001.
4. Brewer, E.: Lessons from giant scale services, IEEE Internet Computing, pages

46-55, August, 2001.
5. Brin, S., and Page, L., The Anatomy of a Large-Scale Hypertextual Web Search

Engine, Computer Networks and ISDN Systems, 30(1-7): 107-117, 1998.
6. Chen, L; Sycara, K.: WebMate : Personal Agent for Browsing and Searching,

Proceedings of the Second International Conference on Autonomous Agents, St.
Paul, MN, May, 132-139. ACM Press, New York, NY, 1998.

7. Collier, R., Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications, PhD Thesis, Dept. Computer Science, University College Dublin,
2001.

8. Collier, R., O’Hare, G. M. P. Lowen, T. D., and Rooney, C. F. B., Beyond
Prototyping in the Factory of Agents, In Proc. 3rd Int. Central and Eastern
European Conference on Multi-Agent Systems (CEEMAS), Prague, Czech
Republic, 2003.

9. Das, S., Shuster, K., and Wu, C.: Agent-Based Complex Query and Information
Retrieval Engine. AAMAS’02. July 15-9,Bologna, Italy, 2002.

10. Doorenbos, R. B., Etsioni, and Weld, D.S.: A Scalable Comparison-Shopping
Agent for the WWW, in W.L. Johnson and B. Hayes –Roth (eds). Proc,
Proceedings of the First International Conference on Autonomous Agents pp. 39-
48, Marina del Rey, CA, USA. ACM Press, 1997.

11. Fischmaister, S., Vigna, G., and Kemmerer, R.A.: Evaluating the Security of
Three Java-based Mobile Agent Systems, Proceedings of the Fifth International
Conference on Mobile Agents, Springer, pp,31-41, 2001.

12. FIPA, The FIPA 2000 Specifications, FIPA Website URL: http://www.fipa.org,
Accessed May 2005.

13. Julian, V; Rebollo, M; Carrascosa, C.: Agentes de Informacion. Revista Base 37.
ISSN 1135-0695, 56-62., 2001

14. Klusch, M.: Information agent technology for the Internet: a survey, Data and
Knowledge Engineering, volume 36 (3), 337-372. 2001.

15. LaMonica, M., Google’s Secret of Success? Dealing With Failure, CNET
News.com,URL:http://news.com.com/Googles+secret+of+success+Dealing+with
+failure/2100-1032_3-5596811.html, 2005.

16. Lieberman H. Letizia: An Agent That Assists Web Browsing, Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal, 1995.

17. Mamma, The Mamma Meta Search Engine, URL: http://www.mamma.com,
1996

18. McBryan O. A’GENVL and WWWW: Tools for Taming the Web. First
International Conference on the World Wide Web, CERN, Geneva (Switzerland),
May 25-26-27 1994.

http://www.mamma.com/
http://news.com.com/Googles+secret+of+success+Dealing+with+failure/2100-1032_3-5596811.html
http://news.com.com/Googles+secret+of+success+Dealing+with+failure/2100-1032_3-5596811.html
http://www.fipa.org/

19. Moukas A., Maes P., Amalthea: An Evolving Multiagent Information Filtering
and Discovery System for the WWW, invited paper for the first issue of the
Journal of Autonomous Agents and Multiagents 1998

20. Neuman, B.: Scale in Distributed Systems. In T.Casavant and Singhal (eds).
Readings in Distributed Computing Systems, pp 463-489. IEEE Computer
Society Press, Los Alamitos, CA., 1994.

21. Odubiyi, J.B., Kocur, D. J., Weinstein S. M., Wakim, N., Srivastava, S., Gokey,
C., and Graham, J.: SAIRE- a scalable agent-based information retrieval engine,
in Proceedings of the first international conference on Autonomous agents, pp.
292-299, Marina del Rey, CA USA, feb. 1997.

22. Peng L., R. Collier, A. Mur, D. Lillis, F. Toolan, J. Dunnion. Self-Configuring
Agent-based Document Indexing System, CEEMAS 2005, Budapest, Hungary,
15-17 September, 2005.

23. Peck R, Devore J. Statistics, the exploration and analyses of data, Duxbury Press.
1997.

24. Ramirez, J., Donadeu, J., and Neves, F., Poirot a relevance-based web search
agent, AAAI Workshop Artificial Intelligence for Web Search. 2001.

25. Salton, G. and Lesk, M.E.: Computer evaluation of indexing and text processing.
Journal of the ACM, 15(1):8-36, January 1968.

26. Salton, G., Fox, E. A., and Wu, H.. Extended Boolean information retrieval.
Communications of the ACM, 26(11):1022-1036, 1983.

27. Smyth, B., Freyne, J., Coyle, M., Briggs, P., Balfe, E. (2003) I-SPY -
Anonymous, Community-Based Personalization by Collaborative Meta-Search,
Proceedings of the 23

rd
 SGAI International Conference on Innovative Techniques

and Applications of Artificial Intelligence (AI-2003). Cambridge, 2003.
28. Song, R., and Korba, L., The Scalability of A Multi-agent System in Security

Services. NCR/ERB-1098, NRC 44952,August, 2002,.
29. Suel, T., Mathur, C., Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long, X.,

Shanmugasundaram, K., A Peer-to-Peer Architecture for Scalable Web Search
and Information Retrieval, in Proc. 12

th
 International World Wide Web

Conference, Budapest, Hungary, 2003.
30. Tong,Y., O’ Hare, G. M. P., and Collier, R., Using agent uml to design cloning in

agent factory, in Proceedings of the 1st Workshop on COnceptual MOdelling for
Agents (COMOA 2004), Shanghai, China, 2004.

31. Wijngaards, N.J.E., Brazier, F.M.T., van Steen, M., Distributed Shared Agent
Representations. Multi – Agent –Systems and Applications II Vol: 2322, pp.213-
220, July, 2002, Springer Verlag, Lecture Notes in Computer Science.

32. Wooldridge, M., and Jennings, N. R., Intelligent Agents: Theory and Practice,
Knowledge Engineering Review 10(2), 1995.

