
Towards Building A Reputation-based Microservices Trust Model Using
Similarity Domains

Zhongyi Lu1 a, Declan T. Delaney2 b, Tong Li3 c and David Lillis1 d

1School of Computer Science, University College Dublin, Dublin 4, Ireland
2School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, Ireland
3Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
zhongyi.lu@ucdconnect.ie, declan.delaney@ucd.ie, litong@bjut.edu.cn, david.lillis@ucd.ie

Keywords: microservices, trust management, open systems, SOA

Abstract: Microservices have been seen as a solution to open systems, within which microservices can behave arbitrarily.
This requires the system to have strong trust management. However, existing microservices trust models
cannot fully support open systems. In this paper, we propose a reputation-based trust model designed for
open microservices that groups similar microservices within the same “similarity domain” and includes a trust
bootstrapping process and a comprehensive trust computation method. Our proposal introduces a new concept
called “trust balancing” to assure that all microservices can fairly be incorporated into the operation of the
system. The design of the evaluation plan is also introduced to demonstrate the suitability of the proposed
model to open microservice systems.

1 Introduction

The microservices architecture (MSA) is the state of
the art of large-scale software development (Fritzsch
et al., 2019). Typically, microservices within a sys-
tem are designed to trust their peers (Mateus-Coelho
et al., 2021). However, an untrustworthy microser-
vice can cause system breakdowns (Sun et al., 2015).
Therefore, trust models are essential to protect open
microservice systems from vulnerabilities (Pourghe-
bleh et al., 2019). A number of approaches to mi-
croservices trust models have been adopted, includ-
ing those based on “zero-trust” (Hong et al., 2023),
regarding trust as a reflection of its reputation among
other microservices (Ruan et al., 2021), decomposing
the feedback that the truster gives to an entire solu-
tion (Adewuyi et al., 2022), and managing trust using
control models (Venčkauskas et al., 2023).

MSA is seen as the solution for building open sys-
tems (Fritzsch et al., 2019), which face unpredictable
challenges in open environments (Baresi et al., 2006).
Our previous survey (Lu et al., 2023) showed that ex-
isting microservices models cannot fully support open

a https://orcid.org/0000-0002-6428-8782
b https://orcid.org/0000-0001-7028-3307
c https://orcid.org/0000-0002-8881-0037
d https://orcid.org/0000-0002-5702-4463

systems and may cause problems. Thus, a specific
trust model for open microservice systems is needed.

In this paper, we propose a reputation-based trust
model for open microservice systems. Trust is “a be-
lief of a truster in a trustee that the trustee will provide
or accomplish the services that it says it will provide
and meet the expectations of the truster within a spe-
cific context for a specific period of time.” (Lu et al.,
2023) The model groups similar microservices into
“similarity domains” to manage trust. Microservices’
trust scores are based on feedback from recent inter-
actions and various Quality of Service (QoS) metrics.
We also outline an evaluation plan to demonstrate the
model’s suitability for open microservice systems.

2 Related Work

This section briefly reviews existing trust models for
MSAs, focusing on the requirements of open sys-
tems and the integration of newly-added microser-
vices. Due to the similarities between MSAs and Web
services architectures, we also examine relevant lit-
erature from the latter, where extensive research has
been conducted.

2.1 Microservices Trust Models

Microservice systems require trust models to moni-
tor connections and establish trust between individ-
ual microservices, thereby mitigating trust-related at-
tacks (Abdelghani et al., 2016) and system dam-
age (Dragoni et al., 2017). While several publications
have addressed this issue, the literature on trust in mi-
croservices is relatively limited. Existing microser-
vice trust models fall into four categories: Zero-Trust-
based, socio-based, composition-based, and control-
based (Lu et al., 2023).

• Zero-trust-based models trust no microservices.
Authentication and authorisation are required be-
fore any interaction (Gilman and Barth, 2017).

• Socio-based trust models treat the system as a so-
ciety of microservices. Trust scores of microser-
vices reflect their reputation within society.

• Composition-based trust models compose a group
of microservices as one solution. The trusters will
rate the solution, which will then be decomposed
into trust scores for individual microservices.

• Control-based trust models manage trust using
the same logic as control models, which can con-
trol the traffic within the system.

2.2 Trust Models For Open
Microservice Systems

Within open systems, microservices from diverse ori-
gins may join or leave the system arbitrarily, posing
additional challenges for trust management.

Previously, we proposed a set of qualities for trust
models for open microservice systems (Lu et al.,
2023), including: i) a comprehensive trust bootstrap-
ping process; ii) resilience to missing microservices;
iii) defence against trust manipulation; iv) separate
calculation of trust value for each microservice; v)
tolerance for occasional failures; vi) reflection of re-
cent trustworthiness; vii) equitable distribution of ser-
vice calls to all microservices; and viii) integration of
QoS metrics in trust calculation.

2.3 Web services Trust Management

The MSA extends the Service-Oriented Architec-
ture (SOA), which encapsulates functionalities as
network-available services for integration into busi-
ness solutions (Laskey and Laskey, 2009). Despite
MSA being a superior enterprise solution compared
to Web services-based SOA (Raj and Ravichandra,
2018), the latter has a longer history, making it valu-
able to learn from previous Web service trust models.

2.3.1 Web services Trust Model

Wang and Vassileva (Wang and Vassileva, 2007) in-
troduced a three-level hierarchy for Web services trust
model classification, which includes:

• Centralised/Decentralised: In a centralised sys-
tem, a central node manages reputations. For ex-
ample, TRUSS (Tang et al., 2017), which com-
bines objective and subjective trust assessments as
the trust evaluation middleware.
In a decentralised system, there is no central node.
(Nguyen et al., 2010) proposed a Bayesian net-
work trust and reputation model for each con-
sumer to build trust with Web services.

• Agent(Person)/Resource: Agent systems model
the reputation of agents representing people.
RATEWeb (Malik and Bouguettaya, 2009a) as-
sesses trust with the reputation of service vendors.
Resource systems focus on modelling the reputa-
tions of resources. Galizia et al. (Galizia et al.,
2007) managed trust using Web service Trust On-
tology, which embeds the trust-based selection of
Web services into a classification problem.

• Global/Personalised: Global reputation systems
are based on public opinions. Caballero et al.
proposed a model to manage reputation using the
Web service Modelling Ontology in a P2P envi-
ronment (Caballero et al., 2006).
Personalised systems build reputation on subjec-
tive opinions. In the trust model proposed by (Liu
et al., 2014), the Web service network is regarded
as a small-world, where any two services can be
connected through at most six services.

2.3.2 Trust Bootstrapping

Trust evaluation relies on past information about in-
stances. Without such history, newcomers have no
chance to compete with existing Web services for se-
lection by trusters (Nguyen et al., 2012). The cold
start problem then arose as there was typically no
way to judge initial trust (Malik and Bouguettaya,
2009b). The initial trust should not be too high
or too low, so existing services or the new service
would be disadvantaged (Sensoy et al., 2013). Thus,
it is vital to strike a balance when assigning initial
trust to any incoming component. Previous mea-
sures can be divided into three categories: default
value, punishment-based, and adaptive (Zhang and
Li, 2022).

Default value approaches set the initial trust to
a constant default value (Wang and Vassileva, 2007;
Malik and Bouguettaya, 2009b; Jøsang, 2016). How-

ever, inappropriate default values may disadvantage
either existing services or the new service.

Punishment-based approaches assume newcomers
are not trustworthy and set their initial trust value to
a low value (Friedman et al., 2007; Wu et al., 2015;
Zacharia et al., 2000; Yahyaoui and Zhioua, 2013).
However, a low initial trust score increases the risk of
never being invoked.

Adaptive approaches determine the initial trust
value of newcomer services based on their charac-
teristics or similarity with existing services. Three
mechanisms were proposed in (Nguyen et al., 2012):
inheritance, referral, and guarantee mechanisms. The
inheritance mechanism sets trust based on the ven-
dor’s trust degree if they have uploaded other services.
The referral mechanism assesses the newcomer’s be-
haviour in other systems. The guarantee mechanism
assigns high trust to services promising quality and
reimbursement for failures. In (Wu et al., 2015),
a reputation bootstrapping method was introduced,
which used artificial neural networks to learn correla-
tions between service features and performance. Pre-
set communities were created in (Malik and Bouguet-
taya, 2009b), which store similar services. The ser-
vice providers decide which community they believe
their services belong to. In (Sensoy et al., 2013), on-
tology graphs were used to match newcomers with ex-
isting patterns for trust bootstrapping.

2.4 Computing the Trust of
Microservices And Web services

While both microservices and Web services are re-
lated to SOA, their trust computation methods differ.

While Web services trust models are person-
centred or agent-centred, microservices trust mod-
els are resource-centred (Wang and Vassileva, 2007).
Web services aim to build trust and reputation for
vendors selling services over the World Wide Web
(Kreger, 2003), whereas microservices focus on elim-
inating vendor lock-in (Kecskemeti et al., 2016), sug-
gesting less emphasis on building trust for vendors.

MSA favours decentralised governance compared
to Web services and requires fine-grained services,
unlike Web services, which can encapsulate multiple
responsibilities in one service. This complexity poses
challenges for trust modelling, demanding more ro-
bust trust models for MSA..

Existing Web services trust models struggle with
malicious services in composite architectures (Wahab
et al., 2015). MSA, being more vulnerable than Web
services, requires stronger defences against trust at-
tacks (Baresi and Garriga, 2019).

Therefore, existing Web service trust models are

not directly applicable to microservices. Separate
trust models are needed for both microservice sys-
tems and open microservice systems, albeit some as-
pects of microservices trust models may be informed
by pre-existing Web services models.

3 Trust Model Overview

We propose a trust model that is suitable for an open
microservice system.

In a MSA, “domains” are organisational units that
form the systems (Steinegger et al., 2017). Allocating
microservices into different domains based on some
criteria (e.g., the context of the system (Rademacher
et al., 2018)) is a common way to manage microser-
vices. This has inspired us to group functionally sim-
ilar microservices into the same domain. We iden-
tified the similarity metric that we proposed in (Lu
et al., 2024). Unlike the similarity mentioned in (Ma-
lik and Bouguettaya, 2009b), this similarity metric is
computed fully by the system, which avoids the risk
that may be brought about by dishonest vendors being
permitted to choose a domain for their microservices.

There are five architectural components in the
model: Domain Manager, Similarity Evaluator, Simi-
larity Domains, Trust Managers, and Monitors.

Figure 1: An example structure of the model.

Similar microservices are allocated to the same
Similarity Domain, which are all managed by one
Domain Manager. The Domain Manager is a mi-
croservice that maintains domain lists, receives simi-
larity evaluation results, and allocates newcomer mi-
croservices to domains. The Similarity Evaluator is
a microservice that encapsulates a similarity metric,
which evaluates the similarity between a newcomer
microservice and existing services, finds it a match-
ing domain, and sends it to the Domain Manager.

Within each Similarity Domain, there is a Trust
Manager, which is a microservice that manages trust
scores of the services and returns trustee services to
trusters based on a probabilistic selection mechanism.
A key feature of the Trust Manager is that it main-

tains a “trust record” for each microservice to com-
pute trust. This records data relating to the most re-
cent interactions that the microservice has engaged in.
A Monitor also monitors the services within the do-
main to support a penalty scheme that deters trust ma-
nipulation and the QoS performance of services.

In order to support large-scale systems, data will
be distributed. Trust Managers will broadcast their
data to other Trust Managers to avoid any runtime
failures. There will also be backups for the Domain
Manager and Similarity Evaluators to avoid failures.

4 Trust management

Trust management comprises three major processes:
trust bootstrapping for newcomer microservices; trust
value computation; and trust balancing with a proba-
bilistic selection strategy.

4.1 Trust Bootstrapping

When a new microservice joins the system, the Sim-
ilarity Evaluator will use the similarity metric to find
a suitable domain. The result will then be passed to
the Domain Manager and the Trust Manager of the
matching domain.

The Trust Manager of the domain that the new-
comer microservice belongs to has responsibility for
computing a bootstrapping trust score. The initial
trust score of the new microservice i is the mean value
of the trust score of all the other microservices in the
domain. However, if the newcomer service is the only
microservice in the domain, the initial trust value will
be set to 0.5. Formally, the initial trust score for mi-
croservice i (denoted as Ti) is given by

(1)Ti =

{
∑ j∈Di\{i} Tj

|Di|−1 : |Di| > 1
0.5 : |Di|= 1

where Di is the similarity domain that i is associ-
ated with (i.e., microservices within that domain).

4.2 Trust Computation

Later, once the microservice has been added to the
system and begun to satisfy requests, its overall trust
score is computed based on its reputation score Ri,
its QoS score Qi, and possibly a penalty if any trust
manipulation has been observed by the Monitor.

The reputation score of a microservice is the ag-
gregation of its previous trusters’ opinions. It is com-
puted based on the ratings r that the trusters give to the
trustees after each interaction. A rating is an integer

between 0 and n, reflecting the opinion of the truster.
The higher r is, the more trustworthy the truster thinks
the trustee is during their interaction.

Equation 2 demonstrates a rating scale for n = 5.

opinion =

cannot perform, if ri,t = 0
extremely poor, if ri,t = 1
bad, if ri,t = 2
average, if ri,t = 3
good, if ri,t = 4
excellent if ri,t = 5

(2)

The reputation score that trustee microservice i re-
ceives for the t-th interaction that is stored in its inter-
action record is normalised to lie between 0 and 1, as
follows:

(3)Ri,t =
ri,t

n
The QoS score is used to reflect how well mi-

croservices comply with the QoS metrics. QoS is
commonly used in Web service trust models as a fac-
tor to evaluate trust. Combining the definition of QoS
given by W3C (Connolly, 1997) and the selection of
QoS metrics that are often used in previous trust mod-
els, the QoS metrics used in the proposed model are:
i) Availability that shows if a microservice instance
can be retrieved and reached via the network; ii) La-
tency, which is the time interval between the creation
of a request and the completion of the request; iii)
Cost, which is the resource usage during service ex-
ecution time, e.g., CPU utilisation, storage, etc.; iv)
Throughput, which is the number of requests that
the microservice instance has served in a certain pe-
riod of time; and v) Reliability, which is the ratio of
successful responses to all responses that the service
instance returns. Responses that do not match the ex-
pectations based on the API file are unsuccessful. Re-
liability reflects whether a microservice can provide
services that are compliant with its API description.
Availability, latency and throughput quantify whether
a microservice can be accessed by trusters in a certain
period of time. Cost is also a major factor that will
affect trusters’ views of the microservice.

Equation 4 explains the calculation of the QoS
score, which is computed by the Monitor within each
domain. In order to avoid the overhead of constant re-
calculations, several QoS metrics are calculated peri-
odically based on microservice interactions that have
occurred within a specified time period (which may
be in the order of minutes). In the following formu-
lae, x denotes the duration of the most recent time
period for which such a recalculation has occurred.
Equations 5 to 10 explain how each metric score is
calculated.

The overall QoS for the t-th interaction in i’s trust
record, Qi,t is defined as a weighted sum of several
component metrics, as follows:

Qi,t = α×Ai,t +β×Li,t + γ×Θi,t +δ×ρi,t + ε×Ci,t

(4)

where α through ε are the respective positive weights
associated with the component metrics defined be-
low. Specific weights can be chosen to suit particu-
lar system requirements, provided that the sum of the
weights equals 1.

The availability score associated with microser-
vice i for the t-th interaction in its trust record, Ai,t is
given by

(5)Ai,t =
ai,x

min(τi,x)

where ai,x is the time that i has been available during
the calculation period, and τi is the lifetime duration
of i (i.e., the elapsed time since i joined the similarity
domain), to adjust for new microservices that were
not in operation at the start of the calculation period.

The latency score for the t-th interaction of i, Li,t
is given by

(6)Li,t = 1 −
li,t − lmin

lmax − lmin

where li,t is the latency of the t-th interaction of i.
The score is normalised. lmax and lmin are the maxi-
mum and minimum latencies of any interaction in the
record of any microservice in the domain.

The throughput score for i at its t-th iteration, Θi,t ,
is given by

(7)Θi,t =
reqi,x

min(τi,x)

where reqi,x is the number of requests processed by i
during the time interval x.

The reliability score associated with the t-th inter-
action of i, ρi,t is given by

(8)ρi,t =
si,x

si,x + ui,x

where si,x is the number of requests that i successfully
satisfied during time period x, and ui,x is the number
of requests that i did not successfully satisfy during
that time period.

The final component of the QoS computation is
the cost associated with i satisfying request t (denoted
as costi,t). This is defined flexibly in the model to
allow for multiple measures of cost to be dynami-
cally chosen according to the specific use case of a
system. Each such measure is described as a “us-
age perspective”. Common usage perspectives would
include CPU or memory usage, but consumption of

other scarce or expensive resources may be a critical
feature of certain systems. It is given by:

costi,t =
k

∑
j=0

κ j×Ui, j,t , f or
k

∑
j=0

κ j = 1,0≤Ui, j,t ≤ 1

(9)
where k is the number of usage perspectives to be in-
cluded and Ui, j,t is the cost of microservice i engag-
ing in interaction t, as measured by usage perspec-
tive j. This cost is defined in the model as a posi-
tive value that is less than 1, with specific methods
for measuring this dependent on the nature of the us-
age perspective in question (e.g., memory usage cost
may be quantified in comparison to the memory us-
age of other microservices within the same domain).
Each usage perspective has a weight, κ j associated
with it, according to system requirements. The sum
of all such weights must equal 1.

This cost score is normalised to give the nor-
malised cost score for the t-th interaction of i, denoted
as Ci,t , which is computed by

(10)Ci,t =
costi,t − costmin

costmax − costmin
where costmax and costmin are the maximum and min-
imum costs of any interaction in the record of any mi-
croservice in the domain.

4.3 Trust Manipulation and Trust
Balancing

In an open system, it must be assumed that microser-
vices may act in bad faith, particularly given the exis-
tence of a notion of trust. A penalty scheme is incor-
porated into this model to punish trust manipulation
(i.e., malicious attempts to illegitimately gain a high
trust score). Each Monitor seeks to detect evidence of
trust manipulation. The following possible signs of
trust manipulation are anticipated:

• A service instance POSTed a review of another
service instance but had never interacted with the
service instance being rated.

• A service instance keeps POSTing negative re-
views to other service instances.

• A service instance POSTed a review of a service
instance that is contrary to the rest of the trust
record of the trustee.

• A service instance only POSTs reviews to one
specific service instance when there are other
trustworthy services within the domain that the re-
viewed service is in.

• A trusted service instance starts to perform un-
trustworthily (e.g., provides services that are dif-
ferent from its description).

With the behaviour of each microservice being
recorded, its associated Monitor will be able to anal-
yse its behaviour and detect evidence of trust manip-
ulation. The trust of any microservice i will be 0
if manipulative behaviour is detected. This will be
achieved with Prometheus, which is a third-party tool
for microservice activity monitoring. We combine the
activities of microservices with the review record of
microservices to detect manipulation behaviours.

For a microservice i, with other trust scores being
computed, the trust score that microservice i received
for the t-th interaction that is stored in its trust record,
which is their weighted sum, can be calculated as:

Ti,t = ζ×Ri,t +µ×Qi,t , f or ζ+µ = 1 (11)

However, if the interaction shows evidence of trust
manipulation, then Ti,t should be 0.

A record discarding mechanism is adopted so that
the trust score of microservices reflects their more
recent trustworthiness to handle open environments.
The Trust Manager for each domain stores the N most
recent trust record of a microservice, where N is ei-
ther a fixed minimum threshold or all trust records
that have been created since the end of the last QoS
calculation period, whichever is greater. This is to en-
sure that all interactions required to calculate the QoS
metrics for the next calculation period are present.

The system can then calculate the overall trust
score of i with its trust records. The importance of
each record decays over time. Recent trust records
should be of significantly higher importance to the
trust score compared to past records. The formula is:

Ti =
N−1

∑
t=0

2(t +1)×Ti,t

N(N +1)
(12)

4.3.1 Trust Balancing

Trust balancing is a novel concept introduced in this
model. It is derived from the concept of load balanc-
ing. The aim is to distribute the chances of microser-
vices being recommended to trusters using a proba-
bilistic strategy. The probability of a microservice n
being recommended is related to its trust score. Equa-
tion 13 explains how Pi is calculated with Ti:

Pi =
eω×Ti

∑ j∈Di eω×Tj
(13)

where ω is a scaling factor that can give a dispro-
portional higher probability of being recommended
to more trustworthy microservices while ensuring
all microservices with a trust score higher than 0 a
chance of being recommended, so their trust value can
converge from the initial trust value and reflect their
actual trustworthiness. A byproduct is the avoidance

of overload: as all the microservices are involved in
the operation, the possibility of a microservice being
called too many times can be reduced.

5 Evaluation Plan

This section outlines the evaluation design that will
be conducted on the proposed model.

Firstly, we have built a microservice system based
on the real-world OpenAPI dataset introduced in (Lu
et al., 2024). To evaluate the accuracy of trust, we will
manually set the trustworthiness of microservices, ad-
just the code accordingly to reflect this trustworthi-
ness, and then see how well the computed trust score
matches the designed trustworthiness. It is worth not-
ing that this does not mean computed trust scores need
to have exactly the same value as the designated trust
score. As long as the trust score is within an ac-
ceptable margin of error and, more importantly, the
ranking of microservices’ trust scores reflects their
actual trustworthiness, the model will be considered
effective. We will upload microservices to the system
gradually while removing others in order to see how
it can support systems of different scales.

To minimise the effect of other objective factors
on QoS, we deploy all microservices on the same
server but on different ports. It is not realistic in prac-
tice that a MSA-based system is deployed on merely
one single machine. However, as the main objective
of the evaluation is the effectiveness of the trust com-
putation, this kind of implementation will not largely
affect the evaluation. In terms of single-machine de-
ployment, as it does not need to interact with other
servers, the latency could be shorter, and the cost and
throughput could be lower as the host is only working
on one system. All the experiments will be conducted
on a MacBook Pro with an Apple M1 Pro chip, 32GB
of memory, and 994.66GB of storage. The operat-
ing system is macOS Ventura Version 13.5.2 (22G91).
To monitor the performance of the model, we use
Prometheus to monitor the activity of each port.

The evaluation is designed to demonstrate
whether the proposed model can fulfil the eight qual-
ities for open microservice trust models proposed
in (Lu et al., 2023). The evaluation will be carried
out by comparing the performance of a microservice
system with a basic trust model and a microservice
system with the proposed model on all aspects of the
qualities, namely:

Trust Bootstrapping: Trust bootstrapping estab-
lishes initial trust in a newcomer to accommodate it
in the system. The time interval between a new mi-
croservice joining and it being assigned a trust value

and the time interval between a new microservice
joining and it being called by a trustee is recorded.

Resilience to missing microservices: Microser-
vice systems should not be affected if a commonly
used microservice is missing. We will remove some
commonly used microservices to simulate this. The
HTTP request handling time will be recorded to see
how long the system finds a substitute and recovers.

Resistance to trust manipulation: Trust-
manipulative behaviours should not affect the trust
score of microservices. We will manually adjust the
code or API file of microservices to perform the ma-
nipulative behaviours mentioned in Section 4.3 and
monitor whether trust scores are affected.

Individual trust score computation: As Sec-
tion 4.2 demonstrates, the trust score of each mi-
croservice is computed independently. This may not
require any further experimentation.

Failure tolerance: The system should still give
microservices chances to perform after single failures.
We will monitor the system and see how often mi-
croservices are called after single failures.

Reflect recent trustworthiness: The trust score
should represent recent trustworthiness. We will man-
ually change the code of certain microservices to
change their trustworthiness and monitor how many
interactions it takes to let the trust score change.

Distribute chances: All microservices should
have the opportunity to be called. We will monitor
how many microservices are being called in a certain
time period to see if all microservices that are not ex-
tremely untrustworthy are being recommended.

Incorporate objective metrics: The proposed
model includes an objective QoS score. Thus, it in-
corporates objective metrics to compute trust.

6 Conclusion

Trust management is important for systems. Al-
though there is previous research on trust models for
microservices and Web services, they cannot be fully
adopted by open microservice systems. This paper
proposes a reputation-based trust model designed to
support open microservice systems. It has three ma-
jor novelties: a comprehensive trust bootstrapping
process for newcomer microservices using similarity;
an anti-manipulation trust computation process that
computes trust using recent ratings and QoS; and a
trust balancing scheme that distributes microservices’
chances of being recommended to the trusters using a
probabilistic method based on their trust score.

We also proposed the evaluation plan, which will
later be used to test the performance of the proposed

model in a simulated open microservice environment.

ACKNOWLEDGEMENTS

This research is funded under the SFI Strategic Part-
nerships Programme (16/SPP/3296) and is co-funded
by Origin Enterprises Plc.

REFERENCES

Abdelghani, W., Zayani, C. A., Amous, I., and Sèdes,
F. (2016). Trust Management in Social Internet of
Things: A Survey. In Dwivedi, Y. K., Mäntymäki, M.,
Ravishankar, M., Janssen, M., Clement, M., Slade,
E. L., Rana, N. P., Al-Sharhan, S., and Simintiras,
A. C., editors, Social Media: The Good, the Bad,
and the Ugly, pages 430–441, Cham. Springer Inter-
national Publishing.

Adewuyi, A. A., Cheng, H., Shi, Q., Cao, J., Wang, X., and
Zhou, B. (2022). SC-TRUST: A Dynamic Model for
Trustworthy Service Composition in the Internet of
Things. IEEE Internet of Things Journal, 9(5):3298–
3312.

Baresi, L., Di Nitto, E., and Ghezzi, C. (2006). Toward
open-world software: Issues and challenges. Com-
puter, 39(10):36–43.

Baresi, L. and Garriga, M. (2019). Microservices: The Evo-
lution and Extinction of Web Services?, page 3–28.

Caballero, A., Botia, J. A., and Gomez-Skarmeta, A. F.
(2006). A new model for trust and reputation manage-
ment with an ontology based approach for similarity
between tasks. In Fischer, K., Timm, I. J., André, E.,
and Zhong, N., editors, Multiagent System Technolo-
gies, page 172–183, Berlin, Heidelberg. Springer.

Connolly, D. (1997). Quality of Service. https://www.
w3.org/Architecture/qos.html. Accessed: 2024-
04-25.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. (2017). Mi-
croservices: Yesterday, Today, and Tomorrow, pages
195–216. Springer International Publishing, Cham.

Friedman, E., Resnick, P., and Sami, R. (2007).
Manipulation-resistant reputation systems. Algorith-
mic Game Theory, 677.

Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A.
(2019). Microservices Migration in Industry: Inten-
tions, Strategies, and Challenges. In 2019 IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME), pages 481–490.

Galizia, S., Gugliotta, A., and Domingue, J. (2007). A
Trust Based Methodology for Web Service Selection.
In International Conference on Semantic Computing
(ICSC 2007), page 193–200.

Gilman, E. and Barth, D. (2017). Zero trust networks.
O’Reilly Media, Incorporated.

Hong, S., Xu, L., Huang, J., Li, H., Hu, H., and Gu,
G. (2023). SysFlow: Toward a Programmable Zero
Trust Framework for System Security. IEEE Transac-
tions on Information Forensics and Security, 18:2794–
2809.

Jøsang, A. (2016). Subjective logic, volume 3. Springer.
Kecskemeti, G., Marosi, A. C., and Kertesz, A. (2016).

The ENTICE approach to decompose monolithic ser-
vices into microservices. In 2016 International Con-
ference on High Performance Computing & Simula-
tion (HPCS), page 591–596.

Kreger, H. (2003). Fulfilling the Web services promise.
Communications of the ACM, 46(6):29.

Laskey, K. B. and Laskey, K. (2009). Service ori-
ented architecture. WIREs Computational Statistics,
1(1):101–105.

Liu, F., Wang, L., Gao, L., Li, H., Zhao, H., and Men, S. K.
(2014). A Web Service trust evaluation model based
on small-world networks. Knowledge-Based Systems,
57:161–167.

Lu, Z., Delaney, D. T., and Lillis, D. (2023). A Survey on
Microservices Trust Models for Open Systems. IEEE
Access, 11:28840–28855.

Lu, Z., Delaney, D. T., and Lillis, D. (2024). Comparing
the Similarity of OpenAPI-Based Microservices. In
Proceedings of the 39th ACM/SIGAPP Symposium on
Applied Computing, SAC ’24, page 1201–1208, New
York, NY, USA. Association for Computing Machin-
ery.

Malik, Z. and Bouguettaya, A. (2009a). RATEWeb: Rep-
utation Assessment for Trust Establishment among
Web services. The VLDB Journal, 18(4):885–911.

Malik, Z. and Bouguettaya, A. (2009b). Reputation Boot-
strapping for Trust Establishment among Web Ser-
vices. IEEE Internet Computing, 13(1):40–47.

Mateus-Coelho, N., Cruz-Cunha, M., and Ferreira, L. G.
(2021). Security in microservices architectures. Pro-
cedia Computer Science, 181:1225–1236.

Nguyen, H. T., Yang, J., and Zhao, W. (2012). Bootstrap-
ping Trust and Reputation for Web Services. In 2012
IEEE 14th International Conference on Commerce
and Enterprise Computing, page 41–48.

Nguyen, H. T., Zhao, W., and Yang, J. (2010). A Trust
and Reputation Model Based on Bayesian Network
for Web Services. In 2010 IEEE International Con-
ference on Web Services, page 251–258.

Pourghebleh, B., Wakil, K., and Navimipour, N. J. (2019).
A Comprehensive Study on the Trust Management
Techniques in the Internet of Things. IEEE Internet
of Things Journal, 6(6):9326–9337.

Rademacher, F., Sorgalla, J., and Sachweh, S. (2018). Chal-
lenges of Domain-Driven Microservice Design: A
Model-Driven Perspective. IEEE Software, 35(3):36–
43.

Raj, V. and Ravichandra, S. (2018). Microservices: A per-
fect SOA based solution for Enterprise Applications
compared to Web Services. In 2018 3rd IEEE In-
ternational Conference on Recent Trends in Electron-
ics, Information Communication Technology (RTE-
ICT), page 1531–1536.

Ruan, L., Guo, S., Qiu, X., Meng, L., Wu, S., and
Buyya, R. (2021). Edge In-Network Computing
Meets Blockchain: A Multi-Domain Heterogeneous
Resource Trust Management Architecture. IEEE Net-
work, 35(5):50–57.

Sensoy, M., Yilmaz, B., and Norman, T. J. (2013). Discov-
ering Frequent Patterns to Bootstrap Trust. In Cao,
L., Zeng, Y., Symeonidis, A. L., Gorodetsky, V. I., Yu,
P. S., and Singh, M. P., editors, Agents and Data Min-
ing Interaction, page 93–104. Springer.

Steinegger, R. H., Giessler, P., Hippchen, B., and Abeck, S.
(2017). Overview of a domain-driven design approach
to build microservice-based applications. In The Thrid
Int. Conf. on Advances and Trends in Software Engi-
neering.

Sun, Y., Nanda, S., and Jaeger, T. (2015). Security-
as-a-Service for Microservices-Based Cloud Applica-
tions. In 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (Cloud-
Com), pages 50–57.

Tang, M., Dai, X., Liu, J., and Chen, J. (2017). To-
wards a trust evaluation middleware for cloud ser-
vice selection. Future Generation Computer Systems,
74:302–312.

Venčkauskas, A., Kukta, D., Grigaliūnas, Š., and Brūzgienė,
R. (2023). Enhancing Microservices Security with
Token-Based Access Control Method. Sensors,
23(6):3363.

Wahab, O. A., Bentahar, J., Otrok, H., and Mourad, A.
(2015). A survey on trust and reputation models for
Web services: Single, composite, and communities.
Decision Support Systems, 74:121–134.

Wang, Y. and Vassileva, J. (2007). A Review on Trust and
Reputation for Web Service Selection. In 27th Inter-
national Conference on Distributed Computing Sys-
tems Workshops (ICDCSW’07), page 25–25.

Wu, Q., Zhu, Q., and Li, P. (2015). A neural network based
reputation bootstrapping approach for service selec-
tion. Enterprise Information Systems, 9(7):768–784.

Yahyaoui, H. and Zhioua, S. (2013). Bootstrapping trust
of Web services based on trust patterns and Hidden
Markov Models. Knowledge and Information Sys-
tems, 37(2):389–416.

Zacharia, G., Moukas, A., and Maes, P. (2000). Collab-
orative reputation mechanisms for electronic market-
places. Decision Support Systems, 29(4):371–388.

Zhang, J. and Li, D. (2022). A Comprehensive and Unified
Approach to Web Service Trust Evaluation Based on
Uncertainty Methodology. Entropy, 24(22):243.

