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ABSTRACT

In recent years, the proliferation of information being made available in such
domains as the World Wide Web, corporate intranets and knowledge man-
agement systems and the “information overload” problem have caused Infor-
mation Retrieval(IR) to change from a niche research area into a multi-billion
dollar industry.

Many approaches to this task of identifying documents that satisfy a user’s
information need have been proposed by numerous researchers. Due to this
diversity of methods employed to perform IR, retrieval systems rarely return
the same documents in response to the same queries.

This has led to research being carried out in the fields of data fusion and meta-
search, which seek to improve the quality of the results being presented to
the user by combining the outputs of multiple IR algorithms or systems into a
single result set.

This thesis introduces probFuse, a probabilistic data fusion algorithm. ProbFuse
uses the results of a number of training queries to build a profile of the distri-
bution of relevant documents in the result sets that are produced by its various
input systems. These distributions are used to calculate the probability of rel-
evance for documents returned in subsequent result sets and this is used to
produce a final fused result set to be returned to the user.

ProbFuse has been evaluated on a number of test collections, ranging from
small collections such as Cranfield and LISA to the Web Track collection from
the TREC-2004 conference. For each of these collections, probFuse achieved sig-
nificantly superior performance to CombMNZ, a data fusion algorithm often
used as baseline against which to compare new techniques.
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CHAPTER

ONE

Introduction

Information Retrieval (IR) is a long-established research area in the short his-
tory of computing. The term “Information Retrieval” itself was coined by
Mooers as early as the 1950s.

Information retrieval is the name of the process or method whereby
a prospective user of information is able to convert his need for
information into an actual list of citations to documents in storage
containing information useful to him [38].

The roots of IR lie in the organisation of libraries. As library collections in-
creased, more sophisticated methods became necessary in order to aid library
users in finding books that were relevant to their areas of interest. Typically,
these were stored as card catalogues, which were maintained manually. These
catalogues would allow a librarian to perform a search on a user’s behalf by
searching for information such as authors’ names, book titles and keywords.

With the advent of computers, it was a logical step to maintain catalogues in
electronic form that would provide faster access than the old paper-based sys-
tems. However, these computer systems are still best described as performing
“Data Retrieval”, rather than “Information Retrieval”. This is because books
were being searched for based on information about them, such as title or au-
thor, rather than the information contained in them.

In order for the contents of books and documents to be available for search-
ing, it was necessary develop a method for computers to be able to store some
searchable representation of the text contained in them. Progress on this task
was made during the 1950s and it is proposed that the ICSI conference in
Washington in 1958 marks the beginning of true Information Retrieval [28].
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Initially research was performed on small collections of documents, due to
limitations on the storage space and processing power available. For example,
the well-known SMART project performed its early experiments on a “few
hundred” document abstracts [45].

Improvements in computing technology have allowed modern IR systems to
make huge amounts of textual information available to their users. This has
coincided with the popularity of the World Wide Web, which has caused an
explosion in the amount of information being published. In the modern age,
publishing is no longer the sole preserve of government agencies and tradi-
tional publishers. Anybody can easily publish information on the Web.

Due to this huge increase in the amount of textual information available, IR
systems have taken on a more important role than ever before. Users are bom-
barded with massive amounts of information that is impossible for the hu-
man brain to process. This phenomenon has become known as “Information
Overload” [52] and also applies to other information sources such as corporate
intranets and knowledge management systems.

IR systems have become a necessary tool for Internet users to find the informa-
tion they require. The popular Google search engine searches billions of docu-
ments and its popularity is reflected by the word “googling” entering people’s
everyday vocabularies [12]. One study found that by the year 2000, 85% of
Web users use search engines to find information [32]. This figure is likely to
be much higher now and emphasises the importance of IR in modern society.

A typical IR system allows users to express an information need in the form of
a query, which is used to identify documents that contain information relevant
to the user’s request, thus satisfying this need. Historically, this query would
be expressed in terms of a Boolean query, which combines keywords with
the AND, OR or NOT operators to indicate which combination of keywords
should be present in or absent from documents retrieved. More recently, these
queries can take the form of full text queries or simple lists of keywords for
which to search [30].

The usual output of an IR system is a list of documents that it estimates to be
relevant to the user’s query. That is, that the document includes information
that helps to satisfy the user’s information need. This list is typically ranked
according to how relevant to the query the IR system believes the documents
to be, with those documents with the greatest degree of relevance being re-
turned at the beginning. The ultimate goal of any IR system is outlined by Van
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Rijsbergen [43]:

The purpose of an automatic retrieval strategy is to retrieve all the
relevant documents at the same time retrieving as few of the non-
relevant as possible.

Numerous computational approaches have been proposed to address the chal-
lenges associated with IR. In addition to standalone IR systems, meta search
engines such as ProFusion [19], SavvySearch [26] and MetaCrawler [49] have
been developed to relay users’ queries to multiple search engines and combin-
ing the results that they return.

1.1 Motivations for Data Fusion

No single approach to IR has been shown to achieve superior performance in
all situations. This is because of the different methods of representing docu-
ments and user queries, the different policies regarding document and query
preprocessing and the different algorithms used to rank documents. As a re-
sult, individual IR systems will retrieve different documents from the same
document collection in response to the same query [15]. This was shown in
the entries for the TREC-1 conference, many of which achieved approximately
the same performance level but returned substantially different documents in
their result sets [23].

It has been shown that retrieval performance can be improved by combining
the lists of documents produced by a number of different IR algorithms into
a single list [4]. This has become known as “data fusion” [1]. Because some
IR algorithms will return documents that are missed by others, combining nu-
merous sets of results in the correct way will lead to more relevant documents
being presented to the user. In addition, it has been shown that the presence
of a document in the results returned by a number of IR systems reflects an
increased probability that it is relevant to the given query [48].

The term “data fusion” specifically refers to the task of using a number of dif-
ferent IR systems to retrieve documents from the same document collection.
This is in contrast to related tasks such as “collection fusion”, where the docu-
ment collections being searched are distinct [57] and situations where there is
only partial overlap between the document collections [64]. A successful data
fusion algorithm should:
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• retrieve more relevant documents by using many different IR systems as
its inputs

• return relevant documents in high positions in the fused result set by
examining the extent to which the input systems agree on the relevance
of documents

• scale to large collections without degradation in performance

• be robust to differences in the completeness of relevance judgments if
these are required for fusion to be performed

• ensure that the searches performed by the individual IR systems are ex-
ecuted in parallel, in order to ensure a prompt response to the user

1.2 Core Contributions

This thesis introduces probFuse, a novel probabilistic approach to the data fu-
sion problem. ProbFuse is based on the intuitive assumption that the perfor-
mance of individual IR systems on a training set of historic queries is indicative
of future performance. By analysing the distribution of relevant documents in
the training result sets, it is possible to estimate the probability that a docu-
ment appearing in a particular position in a result set will be relevant to the
given query.

This thesis describes a number of experiments that demonstrate the effective-
ness of probFuse and show its improvement over the CombMNZ algorithm,
which is commonly used as a baseline for new data fusion algorithms [6] [37].
ProbFuse is shown to achieve encouraging results on a number of document
collections. The document collections used range from small collections such
as the Cranfield and LISA collections to the large web track collection from the
TREC-2004 conference.

Achieving performance gains for such a wide variety of document collections
is an extremely encouraging result. This demonstrates that probFuse can scale
to many sizes of document collection while continuing to maintain high per-
formance.
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1.3 Thesis Overview

Chapter 2 outlines a number of approaches taken by other researchers in the
past to perform data fusion and related tasks. In addition, some basic IR tech-
niques are introduced, along with some common measure used to evaluate the
performance of IR systems.

The probFuse algorithm is introduced in Chapter 3. This relies on data from the
past performance of its input systems to estimate the relevance of documents
returned in response to subsequent queries. Two methods of calculating the
probability that a document is relevant to a given query are proposed.

An exploratory study was initially carried out in order to test the effective-
ness of probFuse on a number of small document collections, comparing it with
the performance of the popular CombMNZ fusion algorithm. This study is
described in Chapter 4. These small document collections include complete
relevance judgments, meaning that the relevance of each document to each
of the accompanying queries is known. This facilitates the calculation of the
probability of relevance, which is necessary for probFuse to perform effective
data fusion.

Chapter 5 describes experiments on larger document collections from two
TREC conferences, using submissions for the ad hoc track of the TREC-3 and
TREC-5 conferences as the inputs to be fused. In these experiments, the per-
formance of two variations of probFuse that calculate their probabilities in dif-
ferent ways is examined. The aim of these experiments is to demonstrate that
probFuse achieves superior performance to CombMNZ on these collections.
Additionally, it is also necessary to empirically identify values for two vari-
ables that are central to the probFuse algorithm so as to achieve optimal fusion
performance.

Following these experiments, the effectiveness of the values identified in
Chapter 5 was tested by performing fusion on input result sets generated from
a much larger test collection. This experiment is presented in Chapter 6. Ad-
ditionally, the effect of increasing the level of incompleteness of the available
relevance judgements is examined. This experiment uses the document collec-
tion from the web track of the TREC-2004 conference.

Finally, Chapter 7 presents the conclusions that can be drawn from the research
presented in this thesis, along with ideas regarding directions for future related
work.
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CHAPTER

TWO

Background Reading

2.1 Introduction

Numerous researchers have proposed a range of different approaches to IR.
Each of these approaches has a different method of representing a document
in a database, along with an algorithm that it uses to compare users’ queries to
these documents in order to identify those that are most relevant to the query.

In addition to the different models being used, IR systems may also use vari-
ous preprocessing steps for their queries and document indexes. These include
stopword removal (the process of removing common words from a document
collection, as they are of limited use for discriminating between relevant and
nonrelevant documents) and stemming (a process of suffix-stripping so that
words that are semantically linked will be treated as such in the index) [39].
Distinct IR systems may have contrasting concepts of what constitutes a stop-
word and may also use different stemming algorithms.

The primary focus of this chapter is to describe work done by previous re-
searchers in the area of data fusion. Because data fusion requires underlying
IR systems to produce result sets for fusion, a number of models that have been
developed to perform IR are first introduced (Section 2.2). Section 2.3 outlines
a number of measures that have been proposed to evaluate the performance of
IR systems. Finally, in Section 2.4, a number of previous approaches that have
been taken by other researchers in the past to perform data fusion and related
tasks are discussed.
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2.2 Basic Information Retrieval Models

Numerous IR models have been proposed to solve the problem of identifying
documents in a collection that are relevant to a given query.

These IR techniques typically assign a score to each document in a collection.
This score is a judgment of that document’s relevance to the given query. A
list of documents, ranked according to this relevance score, is then returned.
These ranked lists are known by numerous names in the relevant literature.
For consistency, they are referred to as result sets in this thesis, as in [6].

This section describes a number of models that have been proposed for IR. In
Chapter 4, three of these are used to produce the inputs to an initial exploratory
study. For each of these models, the Vector Space Model, the Fuzzy Set Model
and the Extended Boolean Model, the formulae that used to implement the
technique are included. In each case the implementation details are taken from
[3].

2.2.1 Boolean Model

The Boolean Model of Information Retrieval is based on Boolean algebra and
set theory. Under this model, a document in the collection is judged to be rel-
evant or non-relevant to the given query by considering whether query terms
appear in the document or not. Its principal advantage lies in its simplicity,
in that for each relevance judgment, no information other than the query and
the document itself is required. Its query language is also simple, consisting of
keywords linked with the operators AND, OR and NOT. Its main drawback is
that it cannot distinguish between levels of relevancy and fails to return partial
matches, since its judgment is a binary one. As such, it is considered by Baeza-
Yates and Ribeiro-Neto as more of a data retrieval model than an information
retrieval model [3].

2.2.2 Vector Space Model

The Vector Space Model relies on a non-binary weighting system to rank doc-
uments in order of their relevance to a given query. Each term is assigned a
weight in respect of each document. Each document is then represented by
a t-dimensional vector of these weights, where t is the total number of terms
present in the document collection. The similarity between a query and a doc-
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ument is then calculated as the cosine of the angle between their respective
vectors [47] [44].

A key benefit of the Vector Space Model is that a document will not be auto-
matically judged as being non-relevant as a result of not containing all the term
in the query. A similarity threshold may be introduced to prevent documents
with too low a similarity score being returned by the system.

The most popular method for calculating the weights for each term relies on
term frequency (t f ) and inverse document frequency (id f ). The t f represents
how often the term appears in the document in question. The reasoning be-
hind this is that if a query term occurs frequently in a document, it is more
likely to be relevant to the query. Because of the possibility of a document be-
ing judged relevant simply because it is a long document and contains many
occurrences of a query term for this reason, it is necessary to normalise the
t f score to remove such a possibility. The t f ( fi, j) of term i in document j is
calculated by

fi, j =
f reqi, j

maxl f reql, j
(2.1)

where f reqi, j is the number of times term i appears in document j and
maxl f reql, j is the maximum number of times any term l appears in document
j. For any term i not appearing in document j, fi, j = 0.

The id f factor is necessary to ensure that no query term has a disproportionate
effect on the judgment of relevance. It is based on the proportion of the total
documents in the collection that the term appears in. A term that appears
in many documents in the collection is less likely to be a useful indicator of
relevance than a term that only appears in a few documents. The id f score
ensures that a greater weight is assigned to the term that occurs less frequently
in the collection. The id f score of term i is given by

id fi = log
N
ni

(2.2)

where N is the total number of documents in the document collection and ni

is the number of documents that contain a term i.

Once t f and id f have been calculated, wi, j, the term weight for term i in docu-
ment j is given by
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wi, j = fi, j × id fi (2.3)

Each document in the system is represented by a t-dimensional vector of these
term weights, where t is the total number of terms that are present in the sys-
tem. Each query submitted to the system is represented in the same way. The
similarity between a document and a given query is then found by calculating
the cosine of the angle between the two vectors. The similarity of document d j

to query q, sim(d j, q) is given by

sim(d j, q) =
∑

t
i=1 wi, j × wi,q√

∑
t
i=1 w2

i, j ×
√

∑
t
j=1 w2

i,q

(2.4)

where t is the total number of terms that are present in the system, wi, j is the
term weight of term i for document j and wi,q is the term weight of term i for
the query q.

The Vector Space Model has been used to great effect in empirical studies and
has become very popular amongst the Information Retrieval community [23].

2.2.3 Probabilistic Model

The Probabilistic Model was originally proposed by Maron and Kuhns [35]. A
Probabilistic IR system attempts to calculate the probability of each document
being relevant to a particular query [27]. As with the Vector Space Model,
relevance is not a binary attribute, so some documents may be judged to be
more relevant than others.

For best performance, the model relies on information about relevant docu-
ments to estimate the relevance of other documents. In many systems (includ-
ing a web-based search engine), no relevance information is available when
the search is initiated. Thus t f and id f can be used to estimate relevance at this
stage. Relevance information is frequently obtained by using user feedback to
refine the search.

2.2.4 Fuzzy Set Model

Whereas the Boolean Model makes a binary judgment on whether a docu-
ment belongs to the set of relevant documents or not, the Fuzzy Set Model is
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based on the theory that each document has a degree of membership of this set.
Based on fuzzy set theory [67], it is necessary to define a membership function
in order to determine the degree to which a document is part of a set. Once
this is done, the union and intersections of fuzzy sets can also be calculated.

Within this model is the ability to create a thesaurus of similar terms (called
a keyword connection matrix). This facilitates the creation of a fuzzy set for
each term consisting of the documents which have a degree of relevance to that
term. Unlike the more traditional IR approaches, this will not just consist of
documents that contain the term itself but also documents containing similar
terms. Once a query is run, the results are calculated by finding the intersection
of the fuzzy sets relating to the query terms.

To construct this keyword connection matrix, it is necessary to calculate the
correlation between each pair of terms in the document collection. The corre-
lation ci,l between two terms ki and kl is given by

ci,l =
ni,l

ni + nl − ni,l
(2.5)

where ni is the number of documents that contains the term ki, nl is the num-
ber of documents containing the term kl and ni,l is the number of documents
containing both term ki and kl.

Once this connection matrix has been constructed, a fuzzy set associated with
each term can be defined. Each document d j in the collection will have a degree
of membership � i, j of the set for each term ki. This is given by

� i, j = 1− ∏
kl∈d j

(1− ci,l) (2.6)

where kl is a term contained in document d j and ci,l is the correlation between
term ki and kl.

The Fuzzy Set Model expects the queries it receives to be in Boolean form.
In Chapter 4, Fuzzy Set Model is used as one of the inputs for the initial ex-
ploratory study in data fusion. The queries for each of the document collec-
tions used are in full text form. These are converted to Boolean type queries by
inserting the AND operator between each pair of terms. In this situation, the
degree of membership � q, j of a document d j to the fuzzy set Dq representing
a query q can be simplified to
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� q, j =
t

∏
i=1

� i, j (2.7)

where t is the number of terms in the conjunctive Boolean query and � i, j is the
degree of membership of document d j to the fuzzy set associated with term ki.

A full discussion of the treatment of more complex Boolean queries is outside
the scope of this thesis. Such a discussion can be found in [3].

The key advantage of the Fuzzy Set Model is the ability to take terms that
are relevant to the query terms but are not included in the query themselves.
However, documents containing all search terms will be given a score of 1, as
with the Boolean Model. For this reason, the Fuzzy Set Model does not place
any particular order on these documents and so retrieval performance suffers
[22]. Thus the Fuzzy Set Model is not popular amongst IR researchers.

2.2.5 Extended Boolean Model

The Extended Boolean Model extends the simple Boolean Model to allow par-
tial matching and term weighting by incorporating elements of the Vector
Space Model, namely t f and id f [46]. The reasoning behind its development
is the binary nature of the Boolean Model. For example, in a Boolean query
requiring the presence of two query terms, a document will not be returned if
only one of those terms appears, even though it is clearly more relevant than
one in which none of the terms occurs.

The weights used in the Extended Boolean Model are slightly different to those
used in the Vector Space Model. Instead of using the t f .id f weighting scheme
shown in equation 2.3, a normalised variation is used, which ensures that the
weights lie between 0 and 1. This is given by

wx, j = fx, j ×
id fx

maxi id fi
(2.8)

where fx, j is the term frequency of term x in document j as calculated by equa-
tion 2.1, id fx is the inverse document frequency of term x, as calculated by
equation 2.2 and maxi id fi is the maximum id f score for any term i in the doc-
ument collection.

A version of the Extended Boolean Model, the p-norm model, introduces a
variable p, which affects the way the model performs. If p is assigned a value
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of 1, the model functions similarly to the Vector Space Model. If p is assigned a
value of infinity, it functions like the Fuzzy Set Model. The ranking behaviour
of the model can be varied by using different values of p.

The p-norm variation of the Extended Boolean Model is used in Chapter 4. For
each of the document collections used, the available queries are in the form of
full text queries. In order to use the Extended Boolean Model, it was necessary
to convert these to Boolean queries. To do this, it was assumed that the query
was intending to find documents that contained all of the terms contained in
it and a conjunctive Boolean query was formed by using the AND operator.
The similarity between qand, a conjunctive Boolean query with m terms and a
document d j, sim(qand, d j) is given by

sim(qand, d j) = 1−
(

(1− x1)p + (1− x2)p + ... + (1− xm)p

m

)
(2.9)

where each xi represents the weight wi, j associated with term ki and document
d j.

This is only one form of query that the Extended Boolean Model can accept.
Further details on running disjunctive queries and combining conjunctive and
disjunctive queries can be found in [3].

Although introduced some time ago, it has not proved to be particularly pop-
ular amongst the IR community.

2.2.6 Neural Network Model

The Neural Network Model involves an IR system comprised of a three layer
neural network [62]. The first layer contains nodes relating to the query terms,
the second contains nodes relating to the terms in the collection and the third
relates to the documents in the collection. When a query is run, the query
term nodes send signals to the term nodes, which in turn send signals to the
documents nodes, based on the weight of each term within each document.
Once these signals reach the document nodes, they in turn send out signals
to each term which has a weight in relation to that document associated with
it. Because each node sends signals to multiple other nodes, these signals are
weakened with each iteration. The document and term nodes continue to pass
signals back and forth until these signals become extremely small.

This activation spread is considered to be analogous to an automated inbuilt
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thesaurus being invoked with each query (thus allowing relevant terms which
do not themselves occur in the query to be taken into account), which is a
strong argument in its favour [3].

2.3 Evaluation Measures

One of the key challenges of IR is to be able to evaluate the effectiveness of
an IR system. The “Cranfield paradigm” for IR evaluation emerged in the
1960s. This stemmed from research carried out at the Cranfield College of
Aeronautics to test indexing techniques. In their experiments, a number of
test queries were created for a static document collection, and each document
in the collection was judged to be either relevant or nonrelevant to each of the
queries [41]. Despite the fact that the concept of “relevance” is quite subjective,
it is the pillar upon which IR evaluation measures are based.

This section introduces a number of measures that are used in IR evaluation.
It pays particular attention to those evaluation measures are will used in this
thesis.

2.3.1 Precision and Recall

Precision and Recall are evaluation measures that reflect the key aims of any
IR system, as outlined in Chapter 1. Recall measures a system’s success at
returning the maximum number of relevant documents possible. Precision
measures the ability to avoid returning nonrelevant documents.

More formally, Recall is the fraction of the total available relevant documents
that have been retrieved. It is given by

Recall =
|Ra|
|R| (2.10)

where |Ra| is the number of relevant documents that have been retrieved and
|R| is the total number of relevant documents that are contained in the docu-
ment collection.

Precision is the fraction of the total number of documents that have been re-
trieved that are relevant. It is given by
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Precision =
|Ra|
|A| (2.11)

where |Ra| is the number of relevant documents that have been retrieved and
|A| is the number of documents in the result set that is returned.

Precision and recall are somewhat contradictory in nature. Full recall can be
achieved by simply including every document in the collection in the returned
result set. However precision would be extremely low in this situation. Simi-
larly, precision will be high in situations where only a few documents that are
considered to be highly relevant to the query are returned.

A number of evaluation measures have been proposed that are based on recall
and precision but attempt to allow for this trade-off.

2.3.2 Interpolated Precision and Recall

By themselves, recall and precision do not take the positions in which rele-
vant documents are returned into account. Because result sets take the form of
ranked lists, it is preferable for relevant documents to be returned at the begin-
ning of this list. As a user proceeds down a result set, the precision and recall
values vary. Plotting an interpolated precision versus recall graph demon-
strates this effect. To plot this graph, precision is calculated for 11 standard
recall levels, which are 0%, 10%, 20%, ..., 100%.

However, the recall levels for each query may not correspond with these stan-
dard recall levels. For example, if there are 3 judged relevant documents for
the given query, retrieving the first will cause recall to rise from 0% to 33.33%.
To cater for this, an interpolation procedure is necessary. The interpolated pre-
cision at each standard recall level is the maximum precision found between
between it and the next largest recall level.

Interpolated precision/recall graphs allow both precision and recall to be
viewed in a single graph. The performance of the retrieval system at differ-
ent points in the result set can then be evaluated.

2.3.3 Mean Average Precision

Mean Average Precision (MAP) is defined as the mean of the precision scores
obtained after each relevant document is retrieved, using zero as the precision
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for relevant documents that are not retrieved [8].

This measure rewards systems that return relevant documents in early posi-
tions in their result sets, as the precision at these points will be high. Although
MAP does not specifically take recall into account, it does implicitly reward
systems that achieve high recall. Because relevant documents that are not re-
turned are assigned a precision value of zero, this punishes low-recall systems
that return fewer of the relevant documents.

2.3.4 bpref

The bpref evaluation measure was proposed by Buckley and Voorhees to cater
for situations where incomplete relevance judgments were available [8]. Rel-
evance judgments are considered to be incomplete when not all documents
have been judged for every test query. This means that documents fall into
three categories rather than two: judged relevant, judged nonrelevant and un-
judged.

Older evaluation measures assume that unjudged documents are nonrelevant.
In contrast, bpref only takes judged documents into account, ignoring any doc-
uments for which a relevance judgement is unavailable. For a query with R
relevant documents, the bpref score is given by

bpre f =
1
R ∑

r
1− |n ranked higher than r|

R
(2.12)

where r is a relevant document and n is one of the first R nonrelevant docu-
ment retrieved by the system.

2.3.5 Other Evaluation Measures

Other evaluation measures have also been proposed that aim to give a single
value to measure IR effectiveness.

R-precision measures the precision after R documents have been returned,
where R is the number of judged relevant documents that are available to be
retrieved. 100% R-precision would mean that all the relevant documents were
returned at the top of the result set.

P10 measures the precision after the first ten documents have been returned.
This measure rewards IR systems with a tendency to return relevant docu-
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ments in early positions. This is in contrast to the MAP measure, which mea-
sure performance across the full document ranking, including documents that
a user is unlikely to ever examine.

The Harmonic Mean is a single-value measure that aims to reward IR systems
that achieve a balance between precision and recall. The E Measure is a vari-
ation on the Harmonic Mean that allows users to specify whether recall or
precision should be considered to be more important. It incorporates an ad-
justable parameter that causes the measure to favour either precision or recall.

2.4 Data Fusion

In recent years, much research has been conducted into what has become
known as data fusion [1], collection fusion [57] or results merging [64]. In this
section, the differences between these terms are discussed and a number of
approaches that have been proposed by other researchers in the past are out-
lined. As data fusion is the core focus of this thesis, most emphasis is placed
on data fusion techniques. However, for completeness, research on related
concepts is also included.

Section 2.4.1 discusses a number of factors that affect the choice of data fusion
or related technique that is best suited to a particular situation. This enables
a distinction to be made between data fusion and other similar concepts that
are applicable in different situations. In Section 2.4.2 the steps involved in per-
forming data fusion are discussed. Finally, Section 2.4.3 outlines a number of
fusion techniques that have been developed in the past by other researchers.
Of these, the CombMNZ algorithm has become the standard data fusion tech-
nique used as a baseline against which to evaluate new techniques [2] [6] [37]
[63]. Throughout this thesis, it will be used as the baseline when evaluating
the probFuse algorithm. For this reason, a detailed description of CombMNZ is
included in Section 2.4.3.1.

2.4.1 Factors Influencing Fusion

2.4.1.1 Input Systems

The concept of an input system varies from technique to technique. Here, the
“input system” is used as a general term to describe anything that returns a re-
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sult set. This may range from autonomous search engines searching their own
separate databases to multiple IR techniques searching in the same database.
The three most common types of input system addressed in previous research
are as follows:

1. Metasearch - This involves fusion of result sets returned by autonomous,
complete search engines. Because these search engines are designed to
act in a standalone fashion, rather than being specifically designed for
use by a meta search engine, relevance scores are not necessarily made
available to the meta search algorithm. Similarly, information about the
contents of the database each engine has access to is typically unavail-
able (the Source-Metadata problem). Montague and Aslam describe this
type of fusion as External Metasearch [37], to distinguish it from Internal
Metasearch, below.

2. Distributed Information Retrieval - This describes a situation when numer-
ous search engines are designed to co-operate within the same system.
Each engine searches its own separate database and returns result sets
which are then fused. Unlike metasearch, the separate engines provide
output that is intended for use by a fusion algorithm, with judged rel-
evance scores included. Information about the database of each engine
is also typically available. Distributed IR usually involves a “broker”
sending queries to individual servers and fusing the results.

3. Internal Metasearch - Here, numerous algorithms perform searches on the
same database and a fusion algorithm is applied to their results in order
to improve overall performance. As with Distributed IR, the relevance
score associated with each document will be available to the fusion algo-
rithm. The significant difference from Distributed IR is that information
about the database being searched by each IR technique will not be use-
ful in differentiating between them for fusion purposes.

2.4.1.2 Database Overlap

Another significant difference between the various fusion algorithms is the ex-
tent to which the databases being searched by each input system is expected
to overlap. The level of overlap in the databases being searched will influence
a fusion technique’s treatment of duplicate documents being returned in mul-
tiple result sets. Three levels of overlap may possibly occur, depending on the
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type of fusion that is being carried out.

1. Disjoint databases - Fusion of result sets returned by input systems search-
ing separate, autonomous document collections has become known as
collection fusion [56].

2. Identical databases - Fusion of result sets returned by input systems search-
ing identical databases has become known as data fusion [64].

3. Overlap exists but the databases are not identical - Wu and Crestani [64] note
that little research has been done in this area, with most research concen-
trating on either identical or disjoint databases.

The different treatment of these three situations is outlined in [64]. For dis-
joint or nearly disjoint databases, the possibility of numerous systems return-
ing duplicate documents is remote and so can be safely ignored. Because the
presence of duplicate documents is so unlikely, it would not be useful to use
such duplication as increased evidence of relevance.

In contrast to this, when identical databases are being searched, the presence
of a document in multiple result sets is usually assumed to infer relevance.

The treatment of duplicates in the third situation is more difficult. In this case,
when a document appears in one result set but fails to appear in another, it can
be explained by one of two reasons:

1. The document is contained in both databases but is not considered to be
relevant to the query by one system.

2. The document is only contained in one database and so can only possibly
be returned by one system.

Without having access to the entire contents of both databases, it is impossible
to tell which of these situations has occurred.

Data fusion is useful in the context of an IR system that uses multiple tech-
niques to retrieve relevant documents. For example, in the context of web
page retrieval, one technique may use a full-text query on the textual content of
documents, another may make use of the text associated with hyperlinks to or
from a document and another may perform retrieval based on meta informa-
tion associated with each document. As these individual retrieval techniques
would be operating within a cooperative system, each will perform retrieval
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from the same document collection. In such a situation, data fusion facilitates
the integration of the results produced by each of these distinct approaches in
order to produce the output result set.

Collection fusion is the technique used by meta search engines such as ProFu-
sion [19], SavvySearch [26] and MetaCrawler [49]. The input systems used in
this situation are uncooperative and will retrieve documents from their own
document collections.

2.4.2 The Fusion Process

There are a number of steps to be carried out in performing fusion. A fusion
technique may incorporate any or all of Server Selection, Querying, Score Nor-
malisation and Merging. These are discussed in the following sections.

2.4.2.1 Server Selection

The aim of Server Selection is to find a subset of the available systems to use
for a given query. Most selection algorithms make their selection based on in-
formation they collect about the contents of the database each server searches.
Thus it is mostly used in External Metasearch and Distributed IR. Selecting all
available input systems is a valid server selection strategy, but is unnecessarily
resource-intensive if it is possible to achieve comparable effectiveness using a
subset of them [42].

Callan et al. [9] considered server selection to be analogous to document re-
trieval. Their CORI (Collection Retrieval Inference Network) used a variation
of tf.idf document ranking to identify which collections should be used in pro-
cessing the query. Instead of tf and idf, they made use of document frequency
(the number of documents in the collection which contain the term) and in-
verse collection frequency (the number of collections which contain the term).

Using this approach, the authors recorded a reduction in recall. This is to be
expected as the elimination of any collection which contains any relevant doc-
ument will logically reduce the total number of relevant documents which it
is possible for the system to return. The key finding of this research, however,
was that precision at low recall levels was not significantly reduced when the
number of collections used was reduced by as much as 43%. The difference
in precision only became significant after 200 documents had been retrieved.
In a typical Internet search engine, precision at low recall levels is the most
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important evaluation measure. This is shown in a study that found that 85%
of web users looked at 10 documents at most when using search engines [51].
The authors suggest that if a user is interested in examining more than 200
documents, more collections could be searched.

An alternative method, Lightweight Probes, was used in [25] to select which
servers will ultimately run the input query. On receipt of a query, the broker
sends a probe to each available server. This probe consists of the two most
significant terms in the query. The significance of the terms are calculated by
reference to a Document Frequency Reference Collection, which is accessible
to each broker. This reference collection should be capable of giving an approx-
imation of the term frequency distribution of the real data in the distributed
collections. Thus, it is unnecessary for this reference collection to grow pro-
portionally with the actual data.

In response to this probe, each server returns information regarding the num-
ber of documents in which each of the terms appears, the number that contains
both terms and the number that contains both terms in close proximity to each
other. The broker can then use this data to decide which servers should be
asked to process the entire query.

The amount of processing required of each server to satisfy the information
requirement of the probe is much less than that needed to process an entire
query, as no document ranking needs to be carried out. Also, the network
bandwidth necessary is very low, as the amount of information travelling in
each direction is small.

In experiments, it was demonstrated that this Lightweight Probes method
outperformed the other methods it was compared to. Server General Utility
assumes that some servers are superior sources of relevant information than
others. However, it relies on data about past query processing on each server.
Additionally, the authors noted that the server rankings are effectively fixed.
Therefore, it is likely to be unsuited to systems where new servers may be
added or removed on a continuous basis. Collection Promise assumes that sub-
collections relate to particular categories of documents. This was the worst-
performing approach tested, to the extent that the authors do not consider it
worthwhile to carry out any further investigation on it.

In the gGlOSS system [21], the broker needs a small amount of information
about each server. Firstly, it needs to know how many documents on the server
each term appears in (this is the same as the document frequency measure in
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[9]). Secondly, it needs the sum of the weight of each term over all documents
on the server. It is estimated that the storage requirements for this information
is 2% of that required to store a full combined index for all servers. Gravano
et al compare a number of formulae to calculate an estimate of the ’goodness’
of each server. A threshold value (user-specified in this case) can be used to
avoid searching judged non-useful servers.

2.4.2.2 Score Normalisation

For Distributed IR systems and systems where multiple algorithms are oper-
ating on the same database, each document returned in a result set will be
accompanied by its associated relevance score. This may also be available for
Metasearch. This score represents the underlying technique’s estimation of the
relevance of that document to the given query and each individual result set is
ranked according to the assigned scores.

When fusing those result sets, however, the relevance scores emanating from
various input systems are unlikely to be directly comparable. This is the case
for two reasons.

When different IR techniques are being used to produce the result sets, they
will have different ways of measuring relevance and will likely return their
scores in different ranges. Table 2.1 illustrates this by showing the highest and
lowest scores returned by six different systems in the ad-hoc task of the 3rd
Text REtrieval Conference (TREC-3) 1.

Table 2.1: Highest and lowest raw scores returned by six IR systems in TREC-3
System brkly6 eth001 nyuir1 pircs1 vtc5s2 westp1
Lowest 0.108848 0.06490 1902 0.7798 0.551542 0.633465
Highest 0.547715 0.63619 67848 9.8907 2.486964 0.828830

Using the raw scores, the scores returned by nyuir1 will have a disproportion-
ately large effect on the final order of the fused result set. Thus, it is necessary
to make scores comparable between input systems. The process of scaling raw
scores into comparable ranges is known as normalisation.

Due to what Larkey et. al. call the “rare term problem” [29], even scores gen-
erated by the same retrieval technique are not directly comparable when using
different databases. This is because collection-dependent information is used
in calculating relevance. The example given in [9] is that the idf scores for the

1The TREC conferences are introduced in more detail in Section 5.1
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words “computer”, “tort” and “cholesterol” will vary widely among technical,
legal and medical collections. They may be rare in other collections and so will
be artificially rewarded in those collections. In this scenario, they suggest that
a normalised idf could be calculated using idf information from the individual
collections. This is computationally expensive, so they suggest the weighted
scores approach instead, which shows similar results but is far less expensive.
Each raw score is weighted according to a weight assigned to the collection it
came from.

A normalisation scheme used by Fox and Shaw [18] is to manipulate each re-
sult set into a the range [0, 1]. The normalised score of each document in each
result set is given by

normalised sim =
unnormalised sim−min sim

max sim−min sim
(2.13)

where max sim and min sim are the maximum and minimum score, respec-
tively, that are actually seen in the retrieval result.

Montague and Aslam describe this as “standard” normalisation [36] and ar-
gue that it is overly sensitive to outliers in the input result sets. This is because
an unusually high maximum score in a result set would cause all other scores
in that set to have a lower normalised score than they otherwise would. The
opposite would be the case for an unusually low minimum score. In order to
reduce outlier sensitivity, they proposed two alternative normalisation tech-
niques.

Sum Norm, like standard normalisation, shifts the minimum score in the result
set to 0. It then scales the set so that the sum of the normalised scores is 1.
ZMUV Norm (Zero-Mean, Unit-Variance) shifts the mean of the scores in the
result set to 0 and then scales the variance to 1. Both of these are less suscep-
tible to outliers than standard normalisation, since the value used for scaling
isn’t dependent on a single document relevance score.

One difference between ZMUV and the others is the treatment of unretrieved
documents. With standard normalisation and Sum Norm, unretrieved doc-
uments are assigned a normalised score of zero. However, doing this for
ZMUV would result in unretrieved documents having an average relevance
score. Thus unretrieved documents are assigned a normalised score of −2 (i.e.
two standard deviations below the mean). Noting that some common fusion
algorithms assume that relevance scores are all greater than zero, the authors
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also proposed 2ZMUV, which shifts the mean to 2, causing “most scores” to
be positive and allowing them to be used in any fusion technique.

A slight variation of standard normalisation was used in [40] and [29]. Here,
instead of using the maximum and minimum scores actually contained in the
result set, they used the maximum score an ideal document could get for the
given query in the input system in question and the corresponding minimum.
Again, this is less susceptible to outliers than standard normalisation.

A very different normalisation technique was used by Wu and Crestani in their
Shadow Document fusion methods [64]. They assume that there is a linear
relationship between the scores assigned to the same document by different
input systems. Regression analysis is then applied to pairs of result sets, be-
ginning with those that have the greatest overlap.

A normalisation technique that is specific to disjoint databases was proposed
by Si and Callan in [50]. Query-based sampling is used to get information
about the contents of the databases. No co-operation is required from the in-
put systems other than answering queries. Queries are sent to each source and
the documents that are returned are analysed. These are then saved in a cen-
tralised database, which is a small subset of the entire distributed collection.
This query-based sampling is based on [10].

At query-time the queries, in addition to being run by each individual input
system, are also run over the small centralised collection. The normalisation
technique is based on two hypotheses:

• Some documents returned by the databases will also appear in the cen-
tralised database. This is assumed because the databases to be queried
are selected based on their resource description, which is built based on
the centralised database.

• The scores assigned to these common documents by the individual in-
put systems can be mapped to their centralised score using a regression
function. A separate regression function can be used for each database
and once this is known, it can be used to produce normalised scores for
documents that do not appear in the centralised database.

In Distributed IR systems, an alternative to normalising scores is to use Collec-
tion Wide Information (CWI) to ensure that the scores returned by the input
systems are directly comparable without normalisation.
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De Kretser et al [16] took the approach of aggregating CWI at the broker before
query time, which was then communicated to the input systems whenever a
query was run. The focus of the paper was to determine how much knowledge
a broker should have of the global environment and how much should be
distributed amongst the input systems.

The Central Nothing approach required least information to be maintained. The
broker maintained no CWI, only a list of input systems that were available
to them. Each system evaluated queries independently within its own sub-
collection. This kept global information to a minimum but at the significant
cost of sacrificing much of the effectiveness of most ranking algorithms as the
“rare term problem” becomes an issue.

Going to the other extreme, under the Central Index approach, the broker has
access to the entire index of the collection. With this model, all query process-
ing is carried out by the broker and the input systems’ only function is to fetch
the documents the broker requests from them. In this case, it was noted that
the storage requirements at each broker were large, with the potential to be-
come impractically so [21]. In addition, due to the fact that this central index
must be processed sequentially, processing time was greater than with other
approaches, with no noticeable gain in effectiveness. It may be argued that,
in this model, the servers merely represent a storage area network, and not a
true distributed IR system. It was noted in [40] that using global idf scores, the
system would behave the same as a centralised system.

A superior approach to either of these is a Central Vocabulary, under which only
the vocabulary of each sub-collection, rather than the entire index is main-
tained by the broker. Under such a scheme, each input system receives the
query terms accompanied by the weight to be used for each. This allows
ranking algorithms to be applied effectively and reduces the central storage
requirements from that of Central Index.

Another approach, proposed by Viles and French [53], relies on servers sharing
CWI amongst themselves. They performed experiments whereby each server
had perfect knowledge of the documents it had control over, along with a por-
tion of the information maintained by all other servers. Based on the premise
that idf is merely an indicator of the significance of a term [54], rather than a
strict mathematical value, the authors results demonstrate that it is possible to
maintain retrieval effectiveness without each server having perfect knowledge
of every other server.
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Using small collections, they found that if each server had information about
only 20% of each other server’s CWI, retrieval effectiveness approached that of
a centralised system. This value is based on random allocation of documents
(i.e. each document has an equal probability of being stored on a particular
server). Where document clustering was used to group similar documents
together, the amount of CWI each server required to maintain effectiveness in-
creased. The collections in question were Cranfield (1400 documents), CACM
(3204 documents), MED (1033 documents) and CISI (1460 documents).

The benefits of such an approach are clear. There is no reliance on any single
element in the system to maintain global collection information. This infor-
mation can be periodically updated in the background, meaning that at query
time, each server has access to all the information it needs to run the query,
rather than requiring it to be supplied by the broker that calls it.

Early experiments showed distributed IR to have inferior performance to a
centralised system [53][65]. However, Powell et. al. [40] argue that this is be-
cause all available databases were queried and describe experiments that show
that appropriate collection selection can cause Distributed IR systems to have
superior performance to a centralised system. Xu and Croft [66] were able to
achieve performance similar to a centralised system by clustering documents
into similar subjects and using collection selection to choose which clusters to
query.

2.4.3 Fusion Techniques

There are two broad categories of fusion techniques. The first utilises the rele-
vance scores returned by the individual techniques to produce an overall score
on which documents are then ranked. Such techniques are useful in situa-
tions where the result sets to be fused are produced by multiple techniques
within the one Information Retrieval system. However, with some meta search
engines (which combine the results of distinct search engines), the relevance
scores are not available, so the rank of each document in each result set is used
to produce a combined relevance score.

Vogt and Cottrell [55] outline three effects that fusion techniques attempt to
benefit from. If the individual systems are retrieving different documents, this
is likely to increase recall (the fraction of total relevant documents that have
been retrieved). They describe this as the “Skimming Effect”, as a fusion tech-
nique would “skim” the top-ranked documents from each result set, since the
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highest density of relevant documents is most likely to appear there. They also
describe the “Chorus Effect”, in which several retrieval sources are in agree-
ment that a document is relevant. In situations where this agreement is correct,
fusion techniques which attach a greater significance to documents which are
common to multiple sources will perform well.

They also identify a “Dark Horse Effect”, in which one retrieval approach re-
turns results of a much different quality than the others. This may either be
the returning of unusually accurate or inaccurate results. Vogt and Cottrell
note that the Chorus and Dark Horse effects are somewhat contradictory in
nature, with the former encouraging fusion techniques to take as many input
systems into account when fusing and the latter suggesting that a single input
may provide the best performance.

2.4.3.1 Score-based Techniques

This section describes a number of fusion techniques that make use of the rel-
evance score assigned to each document by each input system to calculate a
score by which the fused result set will be ordered.

Linear Combination

The Linear Combination model involves a weight being calculated for each
input system. That weight is multiplied by each document score the sys-
tem returns, with the final fused score for a document being the sum of these
weighted scores.

The model is formalised in [55] as follows:

� (W, x, q) =
s

∑
i=1

wi� i(x, q) (2.14)

where s is the number of input systems, � i(x, q) is the raw score given to doc-
ument x by input system i in response to query q, wi is the weight for input
system i and � (W, x, q) is the score used for including document x in a fused
result set in response to query q given the set of weights W.

A Linear Combination was used by Callan et. al in [9], where the weight of
each input system was a function of the database selection score as calculated
by CORI (see Section 2.4.2.1. It was found that this produced similar results
to using global idf scores, while being much less computationally expensive.
This was also used in [40] and a variation using normalised scores (see Section
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2.4.2.2) was used in [50] and [29].

A different weighting system was proposed in [42]. Named LMS (using result
Length to calculate Merging Score), it relied on the number of documents re-
turned by each input system. This was based on the hypothesis that systems
returning more documents are more likely to be providing better results. Un-
der LMS, the weight given to each input system is the number of documents
returned by it, relative to the number returned by the other systems. Its prin-
cipal advantage lies in its simplicity since no prior knowledge of the input
systems is necessary. Disregarding server selection, Rasolofo et. al. found that
LMS produced superior results to Callan’s CORI method.

In [63], Wu and Crestani use the WSUM (Weighted SUM) technique to cal-
culate three possible weights to be assigned to input systems: ‘good’, ‘fair’
and ‘poor’. Which category each fits into is calculated by testing how much
agreement there is between systems. For each system, they take the top N
documents in its result set and sum the number of occurrences of these docu-
ments in all other result sets. The categorisation of a system as ‘good’, ‘fair’ or
‘poor’ is based on how this score compares with the average for all systems.
The score used for each document for fusion was a linear combination of the
document’s normalised score (using standard normalisation) and the weights
of the appropriate input systems. A variation of this was also proposed for
situations where scores were not available. Here, a score was calculated based
on the ranking of the document in the result sets and the linear combination
was performed based on that.

The ProFusion meta search engine [19] makes use of a fusion technique similar
to Linear Combination . Each input system is assigned a “confidence factor”,
which is based on its performance over 25 queries. Documents are given a
“matching factor”, which is their normalised score (the normalisation step is
to divide each raw score by the maximum score attributed to any document in
the result set). The confidence and matching factors are then multiplied to give
the final ranking score for each document. If a document has been returned by
a number of input systems, it is the maximum of these scores that is used in
the fused result set, rather than the sum, which would be the case for a Linear
Combination.

Comb* Algorithms

In [18], Fox and Shaw proposed a number of fusion algorithms based on nor-
malised scores, which are outlined in Table 2.2. In that table, the “Relevance
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Score for Fusion” is the score assigned to each document on which the fused
result set will be ordered. The normalisation scheme used was standard nor-
malisation, although other normalisation schemes have been used with these
algorithms too. Montague and Aslam used Sum Norm and 2ZMUV in [36].
Their ZMUV normalisation scheme was unsuited to CombMNZ, since below-
average scores were normalised to be negative. Lee also performed experi-
ments with a rank-based variation of CombMNZ (see Section 2.4.3.2).

Table 2.2: Fox and Shaw’s Comb* Algorithms
Name Relevance Score for Fusion
CombMIN Minimum of individual relevance scores
CombMED Median of individual relevance scores
CombMAX Maximum of individual relevance scores
CombSUM Sum of individual relevance scores
CombANZ CombSUM ÷ number of non-zero relevance scores
CombMNZ CombSUM × number of non-zero relevance scores

The fusion technique used by the MetaCrawler meta search engine [49] is the
same as CombSUM, with the normalisation scheme being similar to stan-
dard normalisation except that scores are scaled in the range of [0, 1000].
SavvySearch [26] uses CombSUM with standard normalisation. Documents
returned by input systems that do not return a relevance score are arbitrarily
assigned a score of 0.5.

In order to run CombMNZ, two steps must be performed. Firstly, the scores
attributed to each document by each input must be normalised, so that they
lie in a common range. The normalisation scheme chosen for the experiments
outlined in this thesis is the “Standard Normalisation” that is discussed in Sec-
tion 2.4.2.2.

Once the scores have been normalised, CombMNZd, the CombMNZ ranking
score for any document d is given by

CombMNZd =
S

∑
s=1

Ns,d × |Nd > 0| (2.15)

where S is the number of result sets to be fused, Ns,d is the normalised score of
document d in result set s and |Nd > 0| is the number of non-zero normalised
scores given to d by any result set.

A number of experiments were performed by Lee [33] to compare the perfor-
mance of these algorithms and he also attempted to understand situations in
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which fusion could produce superior performance to single systems. These
experiments involved fusion of result sets from six randomly-selected systems
from TREC-3. He found that CombMNZ performed best, followed by Comb-
SUM. Because both of these algorithms use a document’s presence in multiple
result sets as evidence of relevance, they exploit the “Chorus Effect” and are
best suited to data fusion.

Citing Belkin et. al. [7], Lee claimed that different query representations or
retrieval techniques would result in significantly different sets of documents
being retrieved. Based on this, he hypothesised that fusing two result sets
would be beneficial if they had a greater overlap of relevant documents than of
non-relevant documents. However, he did not attempt to specify an optimum
ratio of overlap where fusion will be most effective.

This overlap hypothesis has been rejected by Beitzel et. al. [5][6] (this stemmed
from research done by Chowdhury et. al. in [11]. In their experiments, they
could find no correlation between differing levels of overlap and retrieval
performance. They argue that in a single system using highly effective re-
trieval techniques, fusion will not improve performance above that of the best-
performing individual technique.

They argue that fusing result sets from autonomous systems (as Lee did) varies
more than just the retrieval strategy. Systemic differences such as different
stopword lists, parsers, stemming algorithms and relevance feedback will also
be introduced and it is this that causes the different systems to return differ-
ent result sets. Lee did not take such factors into consideration and this, they
argue, makes it difficult to isolate factors that contribute to fusion effective-
ness. In addition, Lee did not select the best performing TREC systems for his
experiments, selecting them randomly.

The work of Beitzel et. al. is based on two hypotheses:

1. Highly-effective IR systems can be assumed to return high rankings for
relevant documents. This means that common, non-relevant documents
are more likely to be boosted than common relevant documents, thus
fusion actually harms retrieval effectiveness.

2. In systems where systemic variables are eliminated, highly-effective IR
algorithms will return very similar result sets, with the ranking being the
major difference. Therefore, it’s unlikely that unique relevant documents
will be merged into the final result set.
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Their experiments were based on data from the Ad-hoc track of TREC 6,7 and
8, and the Web Track collections from TREC 9 and 10. Systemic properties
(parsers, stemmers, phrase lists and stopword lists) were kept constant, so the
only variable parameter was the retrieval strategy. Three retrieval techniques
were used and the result sets fused using CombMNZ.

To compare with their system, they also used CombMNZ to fuse the result sets
of the three best systems from the same TREC conferences. For the TREC sys-
tems, fusion resulted in superior precision to that of any of the individual input
systems. However, for their own system, it degraded performance. From this,
they concluded that fusion of the results of highly-effective retrieval strategies
in the same system would not improve effectiveness. They also proposed an
alternative hypothesis for situations where fusion would be beneficial. Their
hypothesis is that result sets with a high percentage of unique relevant docu-
ments are likely to cause better results with CombMNZ.

It is worth noting that the MAP scores of the TREC systems outperformed that
of Beitzel’s own highly-accurate techniques. This can be taken to suggest that
it is possible to introduce systemic differences into a system without adversely
affecting performance and that if highly effective techniques that output dis-
similar result sets can be used, fusion may still be beneficial.

A variation of CombMNZ was proposed in [63]. Named WMNZ, the technique
multiplies the sum of the normalised scores by the sum of the weights of the
input systems, rather than the number of input systems. The input system
weights are calculated in the same way as for WSUM.

Shadow Documents

Wu and Crestani [64] proposed two “Shadow Document” methods of fusion.
The focus of their work was partially overlapping databases. In that scenario,
algorithms that use a document’s presence in multiple result sets as evidence
of relevance cannot be used.

Two Shadow Document Methods are proposed. For each technique, the score
assigned to each document for fusion purposes is the sum of its normalised
scores in each result set. If a document appears in one result set but not
another, it is assumed that a “shadow document” of it appears in the one it
doesn’t itself appear in. This shadow document is assigned a score which is
based on its normalised score in the result set it does appear in and also on
a coefficient. It is in the calculation of this coefficient that the two techniques
vary.
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• SDM1 - the coefficient is determined empirically

• SDM2 - the coefficient is a function of the degree of overlap of the result
sets.

SDM2 is superior and also outperforms CombMNZ and CombSUM. Both
SDM methods are better with a greater degree of overlap, though this effect
is strongest for SDM1.

2.4.3.2 Rank-based Techniques

Relevance scores may not be available from all types of input system, particu-
larly in the case of external metasearch. For this reason, some techniques have
been developed that take result sets in the form of ranked lists of documents
without scores as their input. These are fused using the position of each doc-
ument in each result set. Some have been compared favourably with popular
score-based techniques.

Interleaving and Variations

An early, simple method of merging distinct result sets is interleaving, where
the results are merged in round-robin fashion [57], whereby the first-ranked
documents from each result set are placed at the beginning of the merged set,
followed by the second-ranked documents and so on. The effectiveness of
this method is largely dependent on the naive assumption that each system
returns results of equal quality and an empirical study [56] demonstrates a 40%
degradation in effectiveness when compared to the performance of a single
centralised collection.

Voorhees et. al. [56] [60] suggested two variations to interleaving. The key
focus of both was to use training data to predict which input systems were
most likely to return the best results. A greater proportion of higher-ranked
systems’ result sets were used in the fused result set. Once the documents to
be fused had been identified, they were fused in a weighted fashion. For each
position in the fused result set, a system was first chosen by rolling a C-sided
die, biased by the number of documents remaining in each of the C result sets.
Once a system was chosen, the first document remaining in its set was inserted
into the fused set. This had the effect of preserving the rankings returned by
each individual system and giving priority to those systems judged most likely
to return relevant documents.
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The two algorithms only differ in their methods of ranking the input systems.
Both rely on comparing the given query to training queries. With Modeling
Relevant Document Distributions, the query is compared (using cosine similar-
ity) with each training query and the number of documents to be taken from
each result set is based on the performance of each information source for the
queries that are most similar to the given query. Query clustering involves cre-
ating centroid clusters with the training queries, based on the number of re-
trieved documents that queries have in common. In this case, the number of
documents to take from each result set is based on the performance of each
system for the queries in the cluster that the given query is closest to.

Although both of these methods showed vastly superior performance to sim-
ple interleaving, Callan et. al. [9] were of the opinion that they are unsuited
to widely distributed and dynamic collections and that they are only suited
to static collections. Because training information is required for each server,
either method would make it more difficult to add new servers and collections
to the system at a later date.

Voting

Aslam and Montague have proposed two fusion algorithms that are based on
algorithms designed to identify successful candidates in democratic elections
where there are more than two candidates. Both fusion techniques are based
on algorithms developed in the 18th century to overcome limitations in the
simple majority voting system.

Borda-fuse [2] is based on a democratic election model designed for a situation
where there are many candidates, but few voters. They use the analogy that
the voters are equivalent to the input systems being used and the candidates
are represented by the documents retrieved.

With Borda-fuse, each voter ranks a set of c candidates in order of preference.
The top ranked candidate is awarded c points, and the score for each candidate
decreases by one as one progresses down the list. The total score for any one
candidate is the sum of the points awarded to it by all the voters.

A weighted version of this system was also proposed. Here, the scores given
by each system to each document are multiplied by a system weight before
they are summed. Aslam and Montague used the average precision of each
input system as the weight. This was calculated by measuring the performance
of training queries run on each system.

The other voting model they proposed is Condorcet-fuse [37]. Under the tradi-
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tional Condorcet algorithm, the winner is the candidate that beats or ties with
every other candidate in a pairwise comparison. It must be adapted slightly
for fusion, since the goal is not merely to identify the top-ranked document
but rather to include all documents in a ranked list.

Condorcet fuse firstly creates a list of all documents returned by any input
system. It then uses the QuickSort algorithm with the comparison function
being the relative ranking of documents in each system. A document will be
ranked above another if it is ranked higher in more of the input result sets.

They also proposed a weighted variation of Condorcet-fuse. Rather than us-
ing a simple count of the number of input systems that ranked one document
above the other, they use the sum of the weights of those input systems in-
stead. As with weighted Borda-fuse, they use each system’s historical mean
average precision as a weight. In both cases, they accepted that this may not
be the optimal weighting scheme and that its use was to illustrate that using
weighting in these algorithms can improve performance

For both algorithms, the weighted variation outperformed the simple algo-
rithm. Weighted Condorcet-fuse was considered to be the best performer.
Condorcet-fuse outperformed the standard CombMNZ algorithm in 3 out of
4 test collections, with Weighted Borda-fuse achieving similar performance to
CombMNZ.

Because they rely on voting, both of these algorithms are only useful for data
fusion where the database is identical, since it must be possible for each docu-
ment to be returned by each input system.

Rank-based CombMNZ

In [33], as well as using normalised scores, Lee also converted ranks to scores
for use with Fox and Shaw’s CombMNZ algorithm [18]. The conversion was
done using the following function:

Rank Sim(rank) = 1− rank− 1
num o f retrieved docs

(2.16)

Although this didn’t perform as well as CombMNZ with normalised scores,
average precision was within 0.01 in almost all cases. This suggests that in sit-
uations where relevance scores are not available, rank-based CombMNZ could
be a useful fusion technique.
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2.4.3.3 Other Techniques

A number of other techniques have been developed in the area of external
metasearch.

The Inquirus meta search engine [31] downloads each document returned by
the input systems and ranks them based on the number of query terms present
in the document, the proximity of those terms and term frequency.

In [14], Craswell et. al. proposed two alternative merging techniques which
also involved the result sets being re-ranked based on documents’ content.
In Reference Statistics, instead of ranking documents based on full collection
statistics (which may not be available for a meta search engine), they use a sys-
tem based on a reference-statistic database. This contains relevant statistics on
some set of documents which may or may not be a subset of the actual docu-
ment collection being used (in their experiments, the authors used statistics on
10% of the actual document collection). This means that retrieved documents
can be ranked on a full-text basis using a much smaller index. It also caters for
situations where underlying engines do not allow access to their own index.

Feature Distance Ranking operates on the desire to reduce the time and cost
involved in downloading all the retrieved documents from the underlying
search engines in order to perform a ranking algorithm operating on a full-
text basis. Instead, a ranking algorithm was developed that gives a higher
weighting to a term appearing near the start of the document. This is based
on the assumption that terms are less important if they appear at the end of
the document, if it doesn’t appear in close proximity to other query terms, if
it has already appeared earlier in the document or if it is a common term in
the collection. Because of this bias in favour of terms appearing earlier in the
document, query terms appearing towards the end of the document have a
relatively small impact on the ranking score attributed to the document. This
means that, rather than having to download the full text of each document, a
reliable ranking score can be calculated by using only a portion of each doc-
ument, thus saving on processing and network costs, consequently reducing
the time required to perform the document merging.

A further ranking system was proposed in [20], whereby each server re-
turns a ranked list of documents along with accompanying metadata. The
data proposed includes raw-score (the ranking score assigned by the server
to each document returned for the query in question),term-frequency (the
number of times each query term appears in the document), term-weight
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(the weight assigned each query term in each document by each server, us-
ing whichever weighting algorithm is in use on the server itself), document-
frequency (the number of documents on the server that each query term ap-
pears in), document-size (the size of the document in bytes) and document-
count (the number of tokens, as defined by the server (e.g. the number of
terms in the document) contained in the document).

2.5 Chapter Summary

This chapter discusses work that previous researchers have carried out in the
area of Information Retrieval and specifically in the area of data fusion. A
number of IR models that have been proposed in the past are also discussed.
Particular attention has been paid to the Vector Space Model, the Fuzzy Set
Model and the Extended Boolean Model, which are used to produce the inputs
to the data fusion experiment detailed in Chapter 4.

A number of methods of evaluating the performance of IR systems are also
discussed. These will also used for the evaluation of the experiments in Chap-
ters 4, 5 and 6.

Finally, the challenges inherent in the data fusion problem are outlined, along
with a description of a number of approaches that have been taken in the past.
Of these, the CombMNZ algorithm has become a popular algorithm against
which novel data fusion techniques are compared. This will serve as the base-
line against which probFuse is compared in subsequent chapters.
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CHAPTER

THREE

Probabilistic Data Fusion using
probFuse

3.1 Introduction

This chapter describes probFuse, a probabilistic approach to data fusion. Prob-
Fuse ranks documents based on the probability that they are relevant to a given
query. This probability is calculated during a training phase, and depends on
both the input system that returned the document amongst its results and the
position in the result set the document was returned in.

The inputs to the fusion process are a number of collections of result sets that
are produced by different IR models running the same queries on the same
document collection, which means that probFuse falls under the category of
data fusion. Data fusion is outlined in Section 2.4.1.2, along with an example
of a real-world use for it. In order to run probFuse, it is first necessary to build a
set of probabilities for each input system. These probabilities are calculated by
analysing the performance of each individual model on a number of training
queries.

For each of these training queries, the result sets are divided into a number
of segments. Based on the proportion of documents in each segment that are
relevant to the training query, the probability that a document appearing in
that segment is relevant to a given query is calculated. This probability is
averaged over all the training queries, resulting in each input system being
assigned an average probability value for each segment. The division of result
sets into segments is explained in Section 3.2. The calculation of the probability
of relevance for each segment is explained in Section 3.3.

Once these probabilities have been calculated for each input system, probFuse
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can then fuse subsequent result sets returned by those systems. This process is
explained in Section 3.4.

3.2 Segmentation

Many fusion algorithms calculate a relevance score for a document based on
either the individual relevance scores assigned to it in each input result set or
the rank of that document in each of these inputs (See Section 2.4.3).

Rather than using either of these approaches, probFuse divides each result set
into a number of “segments”. The number of segments each result set is di-
vided into is denoted by x. Values of x that result in best performance are
determined empirically (see Chapters 4 and 5).

Figure 3.1: Segmenting a result set for different values of x

Figure 3.1 shows an example of segmenting a result set containing twelve doc-
uments using three different values of x. Taking document d215 as an example,
it can be seen that for a value of x = 2 (i.e. the result set is divided into two
segments), it appears in the second segment of the result set. For x = 3, it is
still in the second segment, moving to the third for x = 4.
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One motivation for the use of segments rather than just the rank a document
appears in is the possibility of input systems returning result sets of different
lengths in response to different queries. For example, a document ranked 10th
in a 20-document result set is less likely to be relevant than one ranked 10th in
a result set of 200 documents.

In addition, ProbFuse requires a training phase to calculate probabilities of rel-
evance for each segment. If these probabilities had been calculated based on
document rank, performing fusion on a result set that contains more docu-
ments than the training result sets would be problematic. This is because no
probabilities would be available for the documents located at the end of the
result set.

The number of segments each result set is divided into remains constant
throughout the fusion process. However, the number of documents contained
in each segment changes in proportion to the length of the result set. Thus,
each result set is always divided into x segments, and x probability values are
also available.

3.3 Probability Calculation

The training phase of probFuse involves calculating the probability that a doc-
ument being returned by a particular input system in a particular segment is
relevant to a given query. The calculation of this probability is carried out by
using t% of all the available queries for training purposes. Values of t that
result in the best retrieval performance are determined empirically (see Chap-
ters 4 and 5).

In order to make use of the results of these training queries, relevance judg-
ments included with the relevant document collection are utilised. For each
query, a list of which documents in the collection are relevant or nonrelevant
to that query is included. For some, generally small, document collections,
complete relevance judgments are available. This means that for each avail-
able query, all the documents in the collection have been judged to be either
relevant or nonrelevant to that query. However, for larger collections, com-
plete relevance judgments are not always available, so the relevance of many
documents is unknown.

Because of this variation in the completeness of relevance judgments, two
slightly different methods of calculating the probability of relevance are pro-
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posed. ProbFuseAll considers unjudged documents to be nonrelevant and is
described in Section 3.3.1. ProbFuseJudged only takes judged documents into
account, ignoring unjudged documents. It is described in Section 3.3.2.

3.3.1 ProbFuseAll

The probability of relevance for documents in each segment is calculated by
considering the fraction of all the documents in the segment that are relevant
to the given query. This probability calculation is referred to as probFuseAll,
in order to distinguish it from the probFuseJudged variation described below in
Section 3.3.2.

In a training set of Q queries, P(dk|m), the probability that a document d re-
turned in segment k is relevant, given that it has been returned by retrieval
model m, is given by:

P(dk|m) =
∑

Q
q=1

|Rk,q|
|k|

Q
(3.1)

where |Rk,q| is the number of documents in segment k that are judged to be
relevant to query q, and |k| is the total number of documents in segment k.

The reason for averaging this probability over a number of training queries
is to enable an accurate representation of the typical distribution of relevant
documents to be built for each input system. This will be used during the
fusion phase to assign a final score for each document that will determine its
rank within the fused result set.

3.3.2 ProbFuseJudged

ProbFuseJudged is a variation of probFuseAll that only takes judged documents
into account when calculating probabilities. Documents that have not been
judged are ignored.

The formula itself is quite similar to that of probFuseAll, with the only adjust-
ment being that the probability is calculated by finding the fraction of judged
documents in each segment that are relevant, rather than the fraction of all
documents.

For probFuseAll, the probability P(dk|m) is given by
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P(dk|m) =
∑

Q
q=1

|Rk,q|
|Rk,q|+|Nk,q|

Q
(3.2)

where |Rk,q| is the number of documents in segment k that are judged to be
relevant to query q, and |Nk,q| is the number of documents in segment k that
are judged to be nonrelevant to query q. Segments containing only unjudged
documents are skipped, as both |Rk,q| and |Nk,q| would be zero, which would
cause the probability to be undefined.

From this equation, it can see that for document collections with complete rel-
evance judgments, probabilities calculated using probFuseJudged will be iden-
tical to those calculated using probFuseAll. This is because all documents will
have either been judged relevant or judged nonrelevant, meaning that there
are no unjudged documents to be ignored.

More formally, this can be expressed by

|Uk,q| = 0 ⇒ |k| = |Rk,q|+ |Nk,q| (3.3)

where |Uk,q| is the number of documents in segment k that have not been
judged either relevant or nonrelevant to query q, |k| is the total number of
documents in segment k, and |Rk,q| and |Nk,q| are the number of documents in
segment k that have been judged relevant and nonrelevant to query q respec-
tively.

3.3.3 Example Probability Calculation

Figure 3.2 and Tables 3.1 and 3.2 show an example of calculating the proba-
bility of relevance figures for each segment for one input system. Specifically,
Figure 3.2 shows three training result sets, (a), (b) and (c), that are segmented
based on an x-value of 4. Documents named Rx are documents that have been
judged to be relevant to the training query in question. Nx indicates that the
document has been judged nonrelevant, while Ux represents documents that
are unjudged.

Probabilities calculated using probFuseAll are shown in Table 3.1, while those
of probFuseJudged are contained in Table 3.2.

Taking the first segment as an example (k = 1), it can be seen that result set
(a) returns three relevant documents in that segment. In this case, probFuse-
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Figure 3.2: Result sets for example probability calculations

All will calculate a probability of 1.0, since all the documents in the segment
are judged relevant. The probability value calculated by probFuseJudged will
also be 1.0, since all the judged documents in the segment are judged relevant.
For result set (b), probFuseAll returns a probability of 0.66, since there are two
relevant documents from three documents in total. ProbFuseJudged ignores the
unjudged document that is returned in second place in the result set. Again, it
calculates the probability to be 1.0, since all the judged documents in the result
set are judged relevant. Result set (c) includes one judged relevant document,
one judged nonrelevant document and one unjudged document in the first
segment. Here, the probability value calculated by probFuseAll will be 0.33,
as only one of the three documents in the segment is judged relevant. Prob-
FuseJudged ignores the unjudged document and produces a probability of 0.50
since one of the two judged documents is judged to be relevant.

In this example, result set (a) does not contain any unjudged documents. This
was done to demonstrate that the probabilities calculated by probFuseAll and
probFuseJudged are the equal when complete relevance judgments are available.
Whenever unjudged documents are present in a segment, the probability cal-
culated using probFuseJudged will be higher than that of probFuseAll.
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Table 3.1: Probability calculation example using probFuseAll

k (a) (b) (c) Average
1 1.00 0.67 0.33 0.67
2 0.67 0.33 0.33 0.44
3 0.33 0.33 0.00 0.22
4 0.00 0.00 0.33 0.11

Table 3.2: Probability calculation example using probFuseJudged

k (a) (b) (c) Average
1 1.00 1.00 0.50 0.83
2 0.67 0.50 0.33 0.50
3 0.33 1.00 0.00 0.44
4 0.00 N/A 1.00 0.50

Segment 4 of result set (b) is an example of a segment that is ignored by prob-
FuseJudged as a result of it only containing unjudged documents. In this case,
the final probability of relevance for segment 4 is the average of result sets (a)
and (c), as (b) does not provide any information on judged documents in that
segment. In contrast, probFuseAll assumes all unjudged documents to be non-
relevant, so it assigns a probability of zero to that segment, which is taken into
account for the average.

In order to be able to proceed to the fusion phase, a set of probabilities such as
those shown in Tables 3.1 and 3.2 needs to be created for each input system.

3.4 Fusion

Once the training phase has been completed and a set of probabilities of rele-
vance has been created for each of the input systems, fusion may be performed
on the results of subsequent queries.

For these queries, the ranking score Sd for each document d is given by

Sd =
M

∑
m=1

P(dk|m)
k

(3.4)

where M is the number of retrieval models being used, P(dk|m) is the proba-
bility of relevance for a document dk that has been returned in segment k in re-
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trieval model m, and k is the segment that d appears in (1 for the first segment,
2 for the second, etc.). For any input system that does not return document d
in its result set at all, P(dk|m) is considered to be zero, in order to ensure that
documents do not receive any boost to their ranking scores from models that
do not consider them to be relevant.

This approach to data fusion attempts to make use of the three effects de-
scribed in Section 2.4.3. By using the sum of the probabilities, more signifi-
cance is attached to documents that have been returned by multiple input sys-
tems, thus exploiting the Chorus Effect. The division by the segment number k
gives a greater weight to documents that appear early in each of the individual
result sets, making use of the Skimming Effect. Finally, because the probabili-
ties are calculated based on the actual past performance of each input system,
greater importance is attached to input systems that are more likely to return
relevant documents in particular segments (Dark Horse Effect).

3.4.1 Fusion Example

Figure 3.3 shows an example of three input result sets which are to be fused,
along with the final fused result set. Each of these inputs is from a different
input system, named “one”, “two” and “three”. Sample probability values for
each are provided in Table 3.3.

Using the given input result sets and the sample probabilities provided, Ta-
ble 3.4 illustrates how the fusion process works. The leftmost column includes
the document identifiers, ordered by their position in the final result set. The
columns marked “one”, “two” and “three” show the probability calculation of
each document for each of the input systems. Finally, the column titled “total”
contains the final score that is used to rank the fused result set.

For example, document d1 occurs in the third segment of result set “one” and
the first segment in each of “two” and “three”. For each result set, the probabil-

Table 3.3: Sample probability data for three input systems

k one two three
1 0.75 0.67 0.90
2 0.67 0.50 0.55
3 0.33 0.30 0.26
4 0.10 0.00 0.15
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Figure 3.3: Sample input result sets with fused result set

ity score associated with the segment the document was returned in is divided
by the segment number. For that reason, the probability for document d1 in
result set “one” is divided by 3, as it occurred in the third segment, and di-
vided by 1 for the other two result sets. These scores are then added together
to produce the final score for ranking in the fused result set.

In Table 3.4, some of the probability calculations are marked as 0 (e.g. for
document d6 in result set “two”). This indicates that the document in question
was not returned in that result set. As indicated in Section 3.4, the probability
is assumed to be zero in this situation.

After all the calculations in Table 3.4 have been carried out, the fused result set
illustrated in Figure 3.3 is produced.

3.5 Summary

In this chapter, the probFuse algorithm is introduced, which is a data fusion al-
gorithm that produces its fused result set by considering the probability that a
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Table 3.4: Sample probability data for three input systems

Document one two three Total
d1 0.330 / 3 0.670 / 1 0.900 / 1 1.680
d7 0.100 / 4 0.670 / 1 0.900 / 1 1.595
d3 0.330 / 3 0.670 / 1 0.550 / 2 1.055
d4 0.750 / 1 0.000 / 4 0.550 / 2 1.025
d5 0.100 / 4 0.000 / 4 0.900 / 1 0.925
d6 0.750 / 1 0 0.260 / 3 0.837
d10 0.750 / 1 0 0.150 / 4 0.787
d8 0.670 / 2 0.500 / 2 0.260 / 3 0.672
d12 0.100 / 4 0.500 / 2 0.550 / 2 0.550
d2 0.670 / 2 0.300 / 3 0.150 / 4 0.472
d11 0 0.500 / 2 0.260 / 3 0.337
d14 0.670 / 2 0 0 0.335
d9 0 0.300 / 3 0.150 / 4 0.137
d15 0.330 / 3 0 0 0.110
d16 0 0.300 / 3 0 0.100
d13 0 0.000 / 4 0 0.000

document is relevant based on its position in the input result sets. It does this
by dividing each result set into a number of segments and calculating the prob-
ability of relevance in each segment by analysing the result sets produced in
response to a number of training queries. The probFuse algorithm is designed
to make use of the three “effects” outlined in Section 2.4.3.

Two methods of calculating the probability of relevance have been proposed.
ProbFuseAll considers unjudged documents to be nonrelevant to a given query
whereas probFuseJudged ignores unjudged documents and only takes judged
documents into account.

This chapter also provides examples to illustrate how these probabilities are
initially calculated, including two variations: probFuseAll and probFuseJudged.
An example of how this probability data is used to perform fusion on a number
of input result sets is also provided.

Optimal values for t (the percentage of available queries uses for training) and
x (the number of segments into which to divide each result set) must be deter-
mined empirically. To calculate these, and to compare the results with a base-
line data fusion technique, three sets of experiments were performed. Chap-
ter 4 describes an exploratory study that investigates the merits of probFuse
when applied to small document collections with complete relevance judg-
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ments. Chapter 5 describes experiments on larger collections, using inputs
from the TREC conferences. These aim to show that it is possible to find a
training set size and number of segments that performs well on both sets of
inputs. Finally, Chapter 6, uses the same training set size and number of seg-
ments as Chapter 5 to investigate the effects of running probFuse on a collection
for which these values have not been specifically optimised.
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CHAPTER

FOUR

Exploratory Study on Small
Document Collections

4.1 Introduction

This chapter describes an initial exploratory study that was performed to ex-
plore the merit of the probFuse algorithm on small collections. A key factor
in the decision to use small collections initially is the presence of complete
relevance judgments. This means that for every document in the collection,
it is known whether that document is relevant or nonrelevant to each of the
accompanying queries. Because of the need for relevance judgments in the
training phase of the probFuse algorithm, the presence of complete relevance
judgments represents an ideal operating environment in which to initially test
the proposed algorithm.

Section 4.2 outlines the aims of this study. The setup of the experiment are
described in Section 4.3. Finally, Section 4.4 analyses the results produced by
probFuse, comparing it with the individual inputs on which it performed fusion
and with the baseline CombMNZ technique.

4.2 Experimental Aims

The principal aim of this initial exploratory study is to demonstrate that data
fusion using probFuse results in superior retrieval performance to any of the
individual inputs being used. In order to do this, it must be possible to find
values for t (the training set size) and x (the number of segments into which
each result set is divided) that result in increased retrieval performance for all
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Table 4.1: Characteristics of Document Collections Used

Collection Documents Queries
Cranfield 1,400 225
LISA 5,872 35
Med 1,033 30
NPL 11,429 93

document collections used. Therefore, in this experiment, a number of com-
binations of values for t and x are evaluated in order to identify values that
result in the greatest performance increase.

An additional objective is to demonstrate that probFuse achieves superior per-
formance to that of the CombMNZ data fusion algorithm.

4.3 Experimental Setup

For this study, four small document collections were chosen for fusion: Cran-
field, LISA, NPL and Med. The characteristics of each of these document col-
lections are outlined in Table 4.1. Each of these collections have complete rel-
evance judgments available to them, meaning that every document has been
judged to be either relevant or nonrelevant to each query. As discussed in Sec-
tion 3.3, no distinction is made between probFuseAll and probFuseJudged in this
chapter. This is because the values produced by the probability calculations
are equal.

For each of these collections, three different input systems were simulated by
running the available queries with three different IR techniques: the Vector
Space Model [47], the Fuzzy Set Model [3] and the Extended Boolean Model.
These models are outlined in Sections 2.2.2, 2.2.4 and 2.2.5 respectively.

As a baseline against which to compare the performance of probFuse, the com-
mon CombMNZ algorithm was chosen, which is described in Section 2.4.3.1.

In order to reduce the possibility of the results being affected by the order
of the queries, the queries relating to each document collection were first ar-
ranged in a random order. Once this was done, each query relating to each
of the four document collections was run by each of the three IR techniques.
This produced three result sets for each query, each produced by a different IR
model. These result sets were used as the inputs for data fusion.
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For each query, the result sets were fused by probFuse using a number of
different combinations of values for t and x. Training set sizes t such
that t ∈{10,20,30,40,50,60,70,80,90} and numbers of segments x such that
x ∈{2,4,6,8,10,20,30,40,50} were used.

The evaluation measure used in this study is based on the interpolated preci-
sion/recall curve that was described in Section 2.3.2. This evaluation measure
also allows a result set produced by a data fusion algorithm to be compared
with the best-performing input result set at every recall level. This is in con-
trast to making comparisons with the best-performing individual input over-
all. For example, one input may achieve high precision at low levels of recall,
but may not perform well at higher levels of recall. Another input may not
achieve high precision at low recall, but may perform better as recall increases.
The evaluation measure used allows for the evaluation of the fused result sets
by comparing them with the former input at low levels of recall and the latter
as recall increases.

Firstly, it is necessary to calculate the interpolated precision for each of the in-
dividual input result sets. This results in 11 precision values, one for each of
the 11 standard recall levels (0% to 100% inclusive, at intervals of 10 percentage
points). The same data is necessary for the fused result set that is being eval-
uated. Once this is done, ∆Pc, the mean difference in precision for document
collection c is given by

∆Pc =
∑

R
r=1 Pf ,r − MAX(Pc,r)

R
(4.1)

where R is the number of standard recall levels, Pf ,r is the precision of the fused
result set at recall level r and MAX(Pc,r) is the maximum precision obtained
by any single retrieval model on collection c at recall level r. The single value
used in Figures 4.1 and 4.2 is the average ∆Pc across all four collections.

4.4 Analysis

Figure 4.1 shows the mean change in precision for the various values of t and
x. Each line represents the mean change in precision over each of the four
document collections for a different training set size. This will enable values
for t and x that perform well on all four collections to be identified.

From this figure, it is observed that the poorest performance is seen at training
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set sizes of 90% and 10%. This suggests that the use of training sets that are
very large or very small will result in poor performance. At a training set
size of 50%, the highest mean difference precision is seen for most values of
x. The only values for which it fails to achieve the best performance are for
x = 2, where greater performance is observed for a training set size of 20%,
and x = 10, where it is outperformed by the training set of 70%.

Figure 4.1: Mean difference in precision for different training set sizes

In Figure 4.2, each line represents the change in average precision for a partic-
ular value of x. This figure shows that the poorest performance is observed for
a value of x = 2. This is a predictable outcome, since by dividing the result
set into two segments, probability of relevance will be assigned to a document
based on which half of the result set it appears in. This is clearly too coarse
a measure, as the results show. Initially, increasing values for x produce su-
perior results, with x values of 10 and 20 showing the highest mean precision
increases. However, once x increases further, the mean difference in precision
begins to decline.

From Figures 4.1 and 4.2, it is observed that the best average performance over
each of the four document collections is achieved by using a training set size
of 50% and by dividing each segment into 20 segments.

Having identified the combination of x and t values that performs best over-
all, the performance of probFuse on each of the document collections can be
evaluated separately. The results achieved by CombMNZ are also presented.

Table 4.2 shows the mean difference in precision for both probFuse and
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Figure 4.2: Mean difference in precision for different values of x

Table 4.2: Comparison of the mean difference in precision achieved by the
probFuse and CombMNZ algorithms for each collection

probFuse CombMNZ
Cranfield +1.92** -1.48*
LISA +3.09** +2.24
Med +3.48 +3.07
NPL +4.80** +4.13**
Max +4.80 +4.13
Min +1.92 -1.48
Avg +3.32 +1.99

CombMNZ on each of the document collections. The values for probFuse are
those produced by using a training set size of 50% and an x-value of 20. In or-
der to enable a valid comparison to be made, CombMNZ was only used on the
queries that were used by probFuse in its fusion phase. Those queries used by
probFuse for training purposes were ignored for the purposes of CombMNZ.
Entries marked with “*” are statistically significant for a significance level of
5%. Entries marked with “**” are statistically significant for a significance level
of 1%, as calculated by the Wilcoxon test [61].

On each of the four document collections, probFuse has achieved a higher in-
crease in precision than CombMNZ. ProbFuse shows mean increase in pre-
cision for all four collections, with these increases being statistically signifi-
cant for the Cranfield, LISA and NPL collections at a significance level of 1%.
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In contrast, CombMNZ achieves a significant increase on the NPL collection
alone, and shows a decrease in precision for the Cranfield collection.

Figure 4.3 illustrates the performance of probFuse and CombMNZ on the Cran-
field collection. It shows the interpolated precision at the standard recall levels
for each of the three individual techniques, as well as for each of the two fu-
sion techniques. This figure shows that probFuse achieves higher interpolated
precision at each of the standard recall levels. This is particularly true for low
levels of recall. The achievement of high precision at low levels of recall is a
promising result, as this is where users will tend to expect relevant documents
to occur.

Figure 4.3: Interpolated Precision graph for the Cranfield collection

4.5 Summary

This chapter describes an initial exploratory study to investigate the merit of
the probFuse algorithm. This study consisted of performing data fusion on a
four small document collections for which complete relevance judgments are
available. It was found that by using 50% of the available queries for training
purposes and by dividing each result set into 25 segments, probFuse achieved
statistically significant performance improvements over the individual inputs
that it was fusing for three of the four document collections, and an average
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improvement on the fourth. CombMNZ, a data fusion algorithm commonly
used as a baseline, was also shown to perform better than the individual inputs
in the majority of cases, although it was shown to cause a significant decrease
in performance for the Cranfield document collection. For each of the collec-
tions for which CombMNZ achieved a performance increase, this increase was
less than that of probFuse.

Having observed promising results on these small document collections, ex-
periments on much larger document collections for which relevance judg-
ments are incomplete may now be performed. These experiments begin in
Chapter 5, using data from the TREC-3 and TREC-5 conferences and continues
in Chapter 6 with experiments on the web track of the TREC-2004 conference.
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CHAPTER

FIVE

Applying probFuse to TREC-3 and
TREC-5

5.1 Introduction

In Chapter 4, it was demonstrated that probFuse shows promise when applied
to small document collections for which complete relevance judgments are
available. This chapter, performs a more detailed analysis of its performance
on larger datasets. These experiments involve performing data fusion on data
taken from the ad hoc track of the TREC-3 [24] and TREC-5 [58] conferences.

The Text REtrieval Conference (TREC) began in 1992 and is co-sponsored by
the National Institute of Standards and Technology (NIST) and the U.S. De-
partment of Defence. Participants are invited to take part in a number of
“tracks”, each of which relate to a different type of IR task. The experiments
presented in this chapter use data from the ad hoc retrieval task, in which par-
ticipants are furnished with a document collection and a number of queries
(known as “topics”). Each participant group then uses its own IR system to
produce a result set for each topic. The quality of these result sets is evaluated
by NIST, after which a workshop is held with the aim of allowing participants
to share their experiences.

For the TREC-3 and TREC-5 ad hoc datasets, the document collection consisted
of mostly news and magazine articles. Relevance judgments are incomplete,
meaning that the relevance of all documents is not known for each query. This
lack of complete relevance judgments allows probFuseAll and probFuseJudged
to be compared with one another, in addition to comparing each with the stan-
dard CombMNZ approach.

The TREC-3 dataset was chosen because it is the dataset on which Lee demon-
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strated the effectiveness of CombMNZ [33]. The addition of the TREC-5
dataset was motivated by the desire to demonstrate that single values for the
training set size and the number of segments can be shown to result in effective
data fusion on multiple input sets. The TREC-5 data represents a document
collection that is similar in size to that of TREC-3 and which has been used by
other fusion researchers in the past [55] [63].

Section 5.2 describes the motivation for the experiments presented in this chap-
ter. In Section 5.3, the setup of these experiments is described, along with de-
tails of the inputs that were used. Sections 5.4 and 5.5 show how the optimal
training set size and the number of segments to divide each result set into were
empirically identified. Finally, Section 5.6 shows the evaluation and analysis
of these fusion experiments on each of the input datasets.

5.2 Experimental Aims

The aim of the experiments presented in this chapter is to find optimal val-
ues for t (the percentage of available queries to be used for training purposes)
and x (the number of segments into which to divide each segment). Ideally,
these should enable probFuse to achieve superior performance to that of the
CombMNZ technique.

The principal objective of this chapter is to identify single values for t and x
that will achieve increased performance. In order for probFuse to be effective,
it must be capable of achieving high performance without it being necessary
to alter the number of segments for each document collection. For this rea-
son, the goal of identifying t and x is to find values that will cause probFuse to
outperform CombMNZ on each of the collections.

5.3 Experimental Setup

The inputs to the fusion experiments presented in this chapter consisted of
result sets submitted to the ad hoc retrieval track of the TREC-3 and TREC-5
conferences. Details of the data available in each of these datasets is presented
in Table 5.1. Each of these inputs to the fusion process represents the output
of one Information Retrieval system when running specific queries on a given
document collection. Each input takes the form of a topfile, which is a collec-
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tion of result sets, each of which is returned in response to a different query
(or topic). Each topfile contains a result set for each of 50 queries. The input
systems for TREC-3 used TREC topics 151-200, while topics 251-300 were used
for TREC-5.

Table 5.1: Details of the TREC-3 and TREC-5 ad hoc datasets

TREC-3 TREC-5
Number of Documents 741,856 524,929
Collection Size 2Gb 2Gb
Number of Participants 40 31
Number of Topics (Queries) 50 50
Average Number of Documents Judged per Topic 1,946.38 2,673.62

Each group that submitted results to TREC-3 or TREC-5 were given 50 queries
on which to test their IR system. Each participating IR system produced a top-
file containing a result set for each of these queries. 40 topfiles are available
for TREC-3, while 31 are available for TREC-5. For the TREC-5 ad hoc task,
there were two categories of participants: Category A participants used of all
the available data, whereas Category B was aimed at exploratory groups that
wished to evaluate novel retrieval techniques but did not have the experience
or resources to deal with large datasets. These groups operated on only a sub-
set of the document collection. For the experiments discussed in this chapter,
only Category A participants were considered.

Five experimental runs were performed for each of the two datasets. For each
run, six input topfiles were selected at random. No input was selected for
multiple runs. Because of the necessity of a training phase, it is possible that
the order of the queries may have an effect on fusion performance. In order
to counteract this, five random orderings of the input queries were created
and fusion was performed on each. The evaluation values presented in Sec-
tion 5.6 for each run are the average scores over each of these five orderings.
The inputs selected for the TREC-3 experiments are shown in Table A.1 and the
inputs from TREC-5 are shown in Table A.2. These tables show the filenames
of the topfiles that were used as inputs to the fusion process.

Having organised the inputs, fusion was then performed on each set of inputs,
using both the probFuseAll and probFuseJudged variations of the probFuse algo-
rithm. The same inputs were then fused using the CombMNZ technique, in
order to enable comparisons to be made later.
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The initial aim of these experiments was to empirically identify the optimal
training set size and the optimal number of segments to divide each result set
into. As a result probFuse was run for a variety of training set sizes and number
of segments. Specifically, training set sizes, t such that t ∈{10, 20, 30, 40, 50}
and numbers of segments, x such that x ∈{2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50,
100, 150, 200, 250, 300, 400, 500} were used.

Any result sets used in the training phase for probFuse were ignored when fus-
ing with CombMNZ. This is to ensure that the results of the fusion using both
algorithms will be comparable, as they will have performed fusion on the same
inputs. CombMNZ does not require any training phase, as it operates purely
on the similarity scores assigned to each document by each input system. Thus
the training queries can safely be skipped.

Because the input data is taken from the TREC conferences, it was decided
to evaluate the fused output result sets using trec eval, which is the evalua-
tion software used for the TREC conferences [59]. Two evaluation measures
are used in these experiments. Initially, the MAP score is used to find the
most effective training set size. Having identified this, the effects of varying
the x-value is examined, in order to identify a combination of t and x that
performs well for both the TREC-3 and TREC-5 inputs. MAP is described in
Section 2.3.3.

Once optimal values for t and x have been identified, the bpref measure is
introduced to supplement MAP when analysing the performance of the fusion
algorithms. This allows a more detailed comparison between probFuse and
CombMNZ. The bpref measure is described in Section 2.3.4.

5.4 Training Set Size

This section identifies a training set size that achieves high performance on
both the TREC-3 and TREC-5 inputs. Table 5.2 shows the average MAP scores
achieved in the experiments on the TREC-3 dataset. Table 5.3 shows the same
data for the TREC-5 experiments. Values in bold type are the maximum in
their respective columns. Each table also shows the difference between the
average MAP score achieved by probFuse and that produced by CombMNZ,
expressed as a percentage of CombMNZ’s score. “CV” indicates the Coeffi-
cient of Variation for each column [17]. The Coefficient of Variation is defined
as the Standard Deviation divided by the Mean. It measures the degree by
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Table 5.2: TREC-3 Average MAP scores for various training set sizes

Training t% CombMNZ probFuse Difference probFuse Difference
All v. MNZ Judged v. MNZ

10% 0.29593 0.33885 +14.50% 0.33988 +14.85%
20% 0.29738 0.34146 +14.82% 0.34312 +15.38%
30% 0.30134 0.34628 +14.91% 0.34830 +15.58%
40% 0.29753 0.34307 +15.31% 0.34517 +16.01%
50% 0.29557 0.34230 +15.81% 0.34445 +16.54%
CV 0.00921 0.00933 0.03991 0.01068 0.04859

Table 5.3: TREC-5 Average MAP scores for various training set sizes

Training t% CombMNZ probFuse Difference probFuse Difference
All v. MNZ Judged v. MNZ

10% 0.17842 0.26011 +45.79% 0.25987 +45.65%
20% 0.17604 0.25959 +47.46% 0.26020 +47.81%
30% 0.17528 0.25842 +47.43% 0.25937 +47.98%
40% 0.17720 0.25959 +46.50% 0.26056 +47.04%
50% 0.17712 0.26061 +47.14% 0.26175 +47.78%
CV 0.00814 0.00376 0.01822 0.00413 0.02443

which the MAP scores vary relative to the mean. The MAP scores in these
tables are the average of the MAP scores for every fused result set produced
using the relevant training set size. This includes the result sets for each value
of x for each fusion run.

At this stage of the analysis, the average MAP score is intended to be a general
indicator of overall performance for each training set size. Because it includes
the MAP scores for all values of x, it is of limited use for detailed performance
analysis. Summarising the performance of every result set produced at each
training set size enables the selection of a training set size to use for further
analysis. This value is then used when analysing the effect of changing the
value of x.

Table 5.2 indicates that for the TREC-3 inputs, the greatest improvement over
CombMNZ is achieved at a training set size of 50% for both probFuseAll and
probFuseJudged. Each variant achieves its highest overall average MAP score
at a training set size of 30%. On the TREC-5 dataset, probFuseAll shows its
greatest improvement over CombMNZ at a training set size of 20%, whereas
probFuseJudged achieves its greatest improvement at 30%. In both cases, how-
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ever, the effect on performance of varying the size of the training set is quite
small.

It is interesting to note that both probFuseAll and probFuseJudged show an over-
all improvement over CombMNZ at every training set size for both input
datasets. At this stage, no effort has been made to select only those runs that
achieve the best performance. The MAP scores shown in these tables are inde-
pendent of the values for x that were used, since they are averaged over all the
runs that were performed using each fusion technique. This means that this
average improvement over CombMNZ is despite the inclusion of the poorest
performing experimental runs in the average MAP values.

For the purposes of Section 5.5, a single training set size must be chosen in
order to be able to identify a high-performance x-value. At a training set size
of 50%, both probFuseAll and probFuseJudged achieve either their highest overall
average MAP score or their greatest improvement over CombMNZ for both
the TREC-3 and TREC-5 inputs. For the TREC-3 inputs, both achieve their
highest overall average MAP score, whereas for TREC-5, the greatest increases
over CombMNZ are achieved. On the TREC-5 data, the average MAP score
achieved at the training set size of 50% is within 2% of the maximum average
MAP achieved for both probFuseAll and probFuseJudged.

From each of the tables, it can be seen that changing the training set size does
not have a large effect on the average MAP scores. This is shown by the Coef-
ficient of Variation being less 0.02 for the average MAP score and less than
0.05 for the improvement over CombMNZ on the TREC-3 dataset. This is
lower for the TREC-5 inputs, for which the Coefficient of Variation is less than
0.005 for the average MAP score and less than 0.03 for the improvement over
CombMNZ.

5.5 Number of Segments

Having determined that best overall performance is achieved for a training set
size of 50%, it is necessary to identify an optimal value for x, the number of
segments into which each result set is divided. This is done by examining the
MAP scores achieved by using each of the x-values listed in Section 5.3 with a
training set size of 50%.

Figures 5.1 and 5.2 show the MAP scores achieved by using different values
for x, the number of segments each result set is divided into. These represent
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the results from the TREC-3 and TREC-5 input sets respectively. Each of these
MAP scores is the average for each of the five fusion runs. Individual graphs
for each of the five runs can be seen in Appendix B for TREC-3 and appendix C
for TREC-5.

Figure 5.1: TREC-3 MAP scores for t = 50% (average over 5 runs)

Figure 5.2: TREC-5 MAP scores for t = 50% (average over 5 runs)

For both input sets, performance is at its worst for a value of x = 2. For
this value, result sets are divided in two, so the probability of relevance is
based on whether a document appears in the first or second half of the result
set. It is unsurprising that this value would produce the lowest MAP scores,
as it is quite a coarse measure. Both input sets show performance increasing
as x increases initially, while both show MAP decreasing slightly at higher
values of x. ProbFuseAll and probFuseJudged show almost identical results, with
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Table 5.4: TREC-3 performance of five individual runs for t = 50% and x = 25
using probFuseAll and probFuseJudged

CombMNZ probFuseAll
MAP bpref MAP bpref

first 0.16726 0.23960 0.30988 (+85.27%) 0.31458 (+31.29%)
second 0.28752 0.33434 0.34100 (+18.60%) 0.33118 (-0.95%)
third 0.43344 0.41222 0.41348 (-4.61%) 0.39222 (-4.85%)
fourth 0.23416 0.31048 0.30374 (+29.71%) 0.30314 (-2.36%)
fifth 0.35548 0.39616 0.39108 (+10.01%) 0.38006 (-4.06%)
Average 0.29557 0.31707 0.35184 (+19.04%) 0.34804 (+9.77%)

CombMNZ probFuseJudged
MAP bpref MAP bpref

first 0.16726 0.23960 0.31144 (+86.20%) 0.31628 (+32.00%)
second 0.28752 0.33434 0.34402 (+19.65%) 0.33356 (-0.23%)
third 0.43344 0.41222 0.41620 (-3.98%) 0.39416 (-4.38%)
fourth 0.23416 0.31048 0.30766 (+31.39%) 0.30528 (-1.67%)
fifth 0.35548 0.39616 0.39294 (+10.54%) 0.38308 (-3.30%)
Average 0.29557 0.31707 0.35445 (+19.92%) 0.35046 (+10.53%)

probFuseJudged being slightly higher at most points.

The point at which MAP begins to decline is different for the two input
datasets. For TREC-3, the MAP is at its peak for a value of x = 15, after which
it declines as x increases. The scores for the TREC-5 inputs continue to increase
until x = 90, at which point the downward trend seen for higher x-values on
TREC-3 is observed.

Dividing each result set into 25 segments yields the best average MAP score
for both TREC-3 and TREC-5. Given that the goal of this section is to identify a
single value for x that will yield high performance for both input datasets, this
is the value that was chosen for analysing the individual runs in Section 5.6.

5.6 Analysis of Individual Runs

Table 5.4 shows the evaluation of the fused result sets produced by running
probFuseAll and probFuseJudged on the TREC-3 inputs. The values in parenthe-
sis are the percentage difference from the corresponding score achieved by the
CombMNZ algorithm. Each table shows the MAP and bpref scores for each of
five runs, which are named “one”, “two”, “three”, “four” and “five”.
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Table 5.5: TREC-5 performance of five individual runs for t = 50% and x = 25
using probFuseAll

CombMNZ probFuseAll
MAP bpref MAP bpref

first 0.25144 0.26406 0.27378 (+8.88%) 0.26814 (+1.55%)
second 0.22480 0.26896 0.35560 (+58.19%) 0.33918 (+26.11%)
third 0.12306 0.19232 0.26838 (+118.09%) 0.24744 (+28.66%)
fourth 0.12626 0.14520 0.15546 (+23.13%) 0.15734 (+8.36%)
fifth 0.16004 0.21790 0.27842 (+73.97%) 0.26474 (+21.50%)
Average 0.17712 0.19740 0.26633 (+50.37%) 0.25537 (+29.37%)

CombMNZ probFuseJudged
MAP bpref MAP bpref

first 0.25144 0.26406 0.26264 (+4.45%) 0.26878 (+1.79%)
second 0.22480 0.26896 0.35844 (+59.45%) 0.34140 (+26.93%)
third 0.12306 0.19232 0.27050 (+119.81%) 0.24920 (+29.58%)
fourth 0.12626 0.14520 0.15602 (+23.57%) 0.15746 (+8.44%)
fifth 0.16004 0.21790 0.27922 (+74.47%) 0.26498 (+21.61%)
Average 0.17712 0.19740 0.26787 (+51.24%) 0.26212 (+32.79%)

Using the MAP evaluation measure, it can be seen that both probFuseAll and
probFuseJudged outperform CombMNZ for four of the five runs. The only ex-
ception is “third”, where CombMNZ achieves a slightly higher MAP score. It
is important to highlight that the MAP scores produced by the probFuse algo-
rithms are actually higher than those achieved for any of the other four runs.
CombMNZ also achieves its highest MAP score on this run. This, combined
with the fact that probFuse outperforms CombMNZ on every other run, sug-
gests that the “third” run is an outlier that can be considered to be an excep-
tion to the trend. The average MAP score of the two probFuse variants is sig-
nificantly higher than that of CombMNZ, showing improvements of between
19% and 20%.

The bpref evaluation metric also shows an average improvement for probFuse.
However, this is attributable to the bpref score for “first” being over 30% better
than that of CombMNZ, for both probFuseAll and probFuseJudged. For each of
the other runs, both probFuse algorithms show slight performance decreases
when compared to CombMNZ. These decreases never exceed 5% for either
probFuse variant, however.

For each of the five experimental runs, the performance of probFuseJudged is
superior to that of probFuseAll when evaluated using either MAP or bpref. The
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Figure 5.3: TREC-3 MAP scores for t = 50% and x = 25

Figure 5.4: TREC-3 bpref scores for t = 50% and x = 25

degree to which the performance of probFuseJudged is higher is extremely small
however. The percentage difference between the two scores only exceeds 1%
for the MAP score on the “fourth” run, and is never in excess of 2%.

The data shown in Table 5.4 is illustrated in Figures 5.3 and 5.4, which show
the MAP and bpref scores respectively for CombMNZ, probFuseAll and prob-
FuseJudged when run on the TREC-3 inputs.

Table 5.5 shows similar data for the five runs that were carried out using the
inputs taken from the TREC-5 data. The MAP and bpref scores for both prob-
FuseAll and probFuseJudged are shown, along with the corresponding scores
achieved by CombMNZ. This data is shown graphically in Figures 5.5 and 5.6,
which show the MAP and bpref scores for each fusion technique on the TREC-

63



Figure 5.5: TREC-5 MAP scores for t = 50% and x = 25

Figure 5.6: TREC-5 bpref scores for t = 50% and x = 25

5 dataset.

Both probFuseAll and probFuseJudged show an average increase in excess of 50%
over the MAP scores achieved by CombMNZ. Additionally, both probFuse vari-
ations outperform CombMNZ on each of the five experimental runs. This im-
provement is over 50% on three runs, and only falls below 20% for the “first”
run.

For the bpref measure, both probFuseAll and probFuseJudged again outperform
CombMNZ, with the improvement attained being in excess of 20% for three of
the five experimental runs.

The results achieved by probFuseJudged are again slightly better than those of
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probFuseAll, which is similar to the results of the TREC-3 experiments. Once
again this improvement is very small, being less than 1% in almost all cases.
The MAP score for the “first” run is the only exception and is the only case
where the results of probFuseAll are better than those of probFuseJudged.

The superior performance of probFuseJudged is particularly interesting when
analysing the bpref score. This is because, like bpref, probFuseJudged only takes
documents that have been judged into account. For probFuseJudged, this be-
haviour occurs during the training phase. The TREC-3 and TREC-5 datasets
do not have complete relevance judgements available for them, meaning that
the relevance of many documents in the collection is unknown. For the level
of incompleteness found in these data sets, the performance of probFuseAll
and probFuseJudged is similar. Chapter 6 will investigate the effects of using
a dataset for which the relevance judgments are even less complete.

5.7 Summary

This chapter outlines experiments that were carried out to demonstrate the
effectiveness of the probFuse approach to data fusion. These were carried out
using inputs from the ad hoc track of the TREC-3 and TREC-5 conferences.

Initially, the percentage of the available queries to use for training purposes
was identified, along with the number of segments into which to divide each
result. Separate values were not calculated for each of the input datasets. In-
stead, a single value for each variable that achieved high performance on both
sets of inputs was selected. It was shown that by using a training set of 50%
of the available queries and dividing each result set into 25 segments, prob-
Fuse outperformed CombMNZ on each of the two datasets. This comparison
with CombMNZ was done using two evaluation metrics: Mean Average Pre-
cision and bpref. These measures were chosen so as to evaluate the overall
performance of probFuse, as each has a very different approach to evaluating
the quality of result sets. Other evaluation measures may be more appropriate
to specific IR tasks. The two variations of probFuse, probFuseAll and probFuse-
Judged were both shown to outperform CombMNZ under both of these mea-
sures. In particular, the results for TREC-5 showed significant improvements
over CombMNZ’s MAP and bpref scores, with increases of 51% and 33% re-
spectively.

Chapter 6 investigates the effects of using the values for t and x that were
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shown to perform well on the TREC-3 and TREC-5 datasets in fusion experi-
ments on a much larger document collection.
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CHAPTER

SIX

Applying probFuse to the
TREC-2004 Web Track

6.1 Introduction

The previous chapters have demonstrated that it was possible to choose val-
ues for the training set size and the number of segments into which to divide
each result set that resulted in probFuse outperforming CombMNZ. The key
difference between this experiment and the experiments outlined in Chapter 5
is the selection of the values for t and x. In the previous experiments, these
values were calculated by finding the combination of t and x values that per-
formed best on both the TREC-3 and TREC-5 datasets. Based on these values,
probFuse was then compared against CombMNZ. In contrast, this experiment
uses these same values to perform fusion on the web track dataset from the
TREC-2004 conference. Thus, it is not known if the result sets being evaluated
achieve the highest performance that could be achieved with probFuse, as the
calculation of t and x is independent of them.

The task that was set for web track participants of TREC-2004 was similar to
the ad hoc task of the TREC-3 and TREC-5 conferences. The difference was that
the document collection consisted of the result of a partial crawl of the .gov
domain. Thus this corpus is much bigger than those used in the TREC-3 and
TREC-5 ad hoc tasks, and the documents are in various formats downloaded
directly from the World Wide Web (84% are HTML documents). Additionally,
the increased size of the document collection means that relevance judgments
are less complete, since a smaller portion of the documents in the collection
have been judged for relevance to the given topics.

Section 6.2 describes the aim of this experiment, while Section 6.3 outlines the

67



setup of the experiment. Following this, Section 6.4 discusses the results of
performing fusion using probFuse and compares them to those of CombMNZ.

6.2 Experimental Aims

The aim of this experiment is similar to that of the previous experiments,
outlined in Chapters 4 and 5. It aims to show that probFuse outperforms
CombMNZ on a number of fusion runs.

The principal difference from the previous experiments is that both the train-
ing set size and the number of segments to divide each result set into are prede-
termined, rather than identifying optimal values during the experiment itself.

Additionally, the chosen document collection is much larger than those that
have been used before. As a consequence, the relevance judgments are less
complete than those that were used previously. This means that there are
many documents in the collection that have not been judged either relevant
or nonrelevant to the accompanying queries. Because probFuse relies on rele-
vance judgments in its training phase, this is a factor that is likely to influence
the fusion results.

6.3 Experimental Setup

The setup of the experiments is similar to the setup used for the experiments
that were outlined in Chapter 5. The inputs were taken from the web track
of the TREC-2004 conference [13]. Details of the data used in this chapter are
given in Table 6.1. Each topfile contains 225 result sets, which represent the
documents returned in response to 225 queries of different types. No distinc-
tion was made between the types of query in each case. Five fusion runs were
performed, each with different sets of inputs. For each run, six input topfiles
were selected at random from the 74 available. The selected topfiles are dis-
played in Table A.3. No input topfile was used for multiple runs.

Unlike the experiments in Chapter 5, these experiments are not concerned with
identifying optimal values for t (the training set size) and x (the number of
segments to divide each segment into). Instead, the same values that were cal-
culated in Chapter 5 are used. This means that for each run, only a single value
for t and x will be evaluated. The effect of this is that the t and x values used
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are independent of the output result sets that are produced, as they are iden-
tified during previous experiments on a different dataset. The experiments
were performed using a training set size of 50% and dividing each result set
into 25 segments. These are the values that were shown to perform best on the
TREC-3 and TREC-5 inputs in Chapter 5.

Table 6.1: Details of the TREC-2004 web track dataset

TREC-2004
Number of Documents 1,247,753
Collection Size 18.1Gb
Number of Participants 62
Number of Topics (Queries) 225
Average Number of Documents Judged per Topic 393.63

On each of the runs, the order of the queries was randomised five times and
the three data fusion techniques, probFuseAll, probFuseJudged and CombMNZ,
were applied each time.

As with the experiments in Chapter 5, the MAP and bpref measures were again
used to evaluate the performance of probFuse. The results of this evaluation is
presented in Section 6.4. Following this, further analysis of these results be-
came necessary. Specifically, this involved examining the distribution of rele-
vant, nonrelevant and unjudged documents in the fused result sets, the recall
of probFuse and CombMNZ and the P10 evaluation measure. This analysis is
presented in Section 6.4.1.

6.4 Evaluation and Analysis

Table 6.2 shows the MAP and bpref scores for probFuseAll and probFuseJudged
for each of the five runs. Each value presented is the average of the five differ-
ent orderings of the input topfiles that were used for each run. This informa-
tion is presented graphically in Figures 6.1 and 6.2.

The comparison between CombMNZ and probFuse does not show any con-
sistent pattern when measured using bpref. Under that measure, both prob-
FuseAll and probFuseJudged achieve better performance than CombMNZ for
two runs (“first” and “fifth”), whereas the bpref score for CombMNZ is higher
on the remaining runs. The degree by which one technique achieves better
performance than another varies widely. For example, on the “fourth” run,
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Table 6.2: TREC-2004 performance of five individual runs for t = 50% and
x = 25 using probFuseAll and probFuseJudged

CombMNZ probFuseAll
MAP bpref MAP bpref

first 0.16042 0.22868 0.39154 (+144.07%) 0.29016 (+26.88%)
second 0.07808 0.31030 0.37536 (+380.74%) 0.25848 (-16.7%)
third 0.03846 0.15788 0.24418 (+534.89%) 0.13236 (-16.16%)
fourth 0.24544 0.40436 0.25862 (+5.37%) 0.14048 (-65.26%)
fifth 0.14130 0.19550 0.30278 (+114.28%) 0.21084 (+7.85%)
Average 0.13274 0.25934 0.31450 (+235.87%) 0.20646 (-12.68%)

CombMNZ probFuseJudged
MAP bpref MAP bpref

first 0.16042 0.22868 0.39920 (+148.85%) 0.30082 (+31.55%)
second 0.07808 0.31030 0.37340 (+378.23%) 0.25558 (-17.63%)
third 0.03846 0.15788 0.24132 (+527.46%) 0.12748 (-19.26%)
fourth 0.24544 0.40436 0.25924 (+5.62%) 0.14204 (-64.87%)
fifth 0.14130 0.19550 0.30284 (+114.32%) 0.21120 (+8.03%)
Average 0.13274 0.25934 0.31520 (+234.9%) 0.20742 (-12.44%)

CombMNZ outperforms both probFuse techniques by over 60%, whereas for
the “first” run, the bpref values for probFuseAll and probFuseJudged are both
over 25% higher than the bpref score for CombMNZ.

In contrast, the MAP scores show a clear trend of probFuse achieving much
higher performance than CombMNZ. Both probFuse variations achieve supe-
rior MAP scores on each of the five runs, and this increase only falls below
100% for a single run. The average improvement of probFuse over CombMNZ
is over 230% in both cases. The only exception to these large performance
increases is the “fourth” run. For that run, CombMNZ achieves its highest
MAP score, as it does for bpref also. Despite this, the probFuse algorithms still
achieve higher MAP scores, albeit to a lesser extent than the other four runs.

Comparing the performance of probFuseAll and probFuseJudged, it can be
seen that neither variant significantly outperforms the other. ProbFuseJudged
achieves slightly higher scores for both MAP and bpref on three of the five
runs. This is in contrast to the experiments on the TREC-3 and TREC-5 inputs,
where probFuseJudged achieved superior evaluation scores on almost all runs.
The difference between these two approaches does not exceed 4% on any of
the runs for either the MAP or bpref scores. This suggests that even for large
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Figure 6.1: TREC-2004 MAP scores for t = 50% and x = 25

Figure 6.2: TREC-2004 bpref scores for t = 50% and x = 25

document collections with limited relevance judgments, the decision to base
the probability calculation for probFuse on all documents or judged documents
does not have a significant effect on fusion performance.

The fact that probFuse achieves a lower average bpref score than CombMNZ,
despite significant increases in MAP scores, is a cause for some concern. These
scores are examined in more detail in Section 6.4.1, with reference to the dis-
tribution of judged relevant, judged nonrelevant and unjudged documents in
the result sets returned by each of the fusion algorithms.
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6.4.1 Analysis of bpref scores

This section examines the distribution of judged relevant, judged nonrelevant
and unjudged documents in the result sets produced by probFuseAll, probFuse-
Judged and CombMNZ. The motivation for this is to explain the differences
between the evaluation results produced using MAP and those using bpref.
Using the bpref measure, CombMNZ achieved a higher level of performance
than probFuse on average, although it did not achieve superior results on all
five runs. In contrast, MAP showed probFuse to outperform CombMNZ to a
significant degree, with increases of over 100% in four out of five runs.

Figures 6.3, 6.4 and 6.5 show the distribution of judged relevant, judged non-
relevant and unjudged documents respectively. Each of these figures contains
a line representing each of CombMNZ, probFuseAll and probFuseJudged. These
lines represent the average distribution over all the result sets produced by
the relevant fusion technique for this experiment. This is the average for all
five fusion runs. Each data point represents the percentage of documents in
a particular position in the result sets that are judged relevant, judged nonrel-
evant or unjudged. The y-axis shows this percentage, while the x-axis shows
the position in the result set. Each point along the x-axis represents a group of
ten documents. For example, data points for position 0 in Figure 6.3 on the x-
axis represents the percentage of documents returned in positions 0 to 9 in the
fused result sets were judged relevant. Similarly, at 1 on the x-axis, it is the doc-
uments returned in positions 10 to 19 that are considered. In this dataset, there
are far fewer judged relevant documents than judged nonrelevant or unjudged
documents. For this reason, the percentages being shown for the judged rele-
vant document distribution are much smaller than for the judged nonrelevant
and unjudged distributions. The scale of Figure 6.3 is different from that of
Figures 6.4 or 6.5 so that the data can be viewed more easily.

The two probFuse variants return more relevant documents than CombMNZ
at the beginning of their fused result sets. This will have a positive effect
on MAP, as the precision of these documents appearing at or near the top of
the result set will be high. A much greater number of early documents re-
turned by CombMNZ are unjudged. This has a detrimental effect on its MAP
scores, as these will effectively be considered to be nonrelevant. However, this
will not affect bpref, despite the fact that fewer relevant documents are be-
ing returned in early positions. For both probFuseAll and probFuseJudged, more
judged nonrelevant documents are being returned at the top of the result sets
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Figure 6.3: Distribution of judged relevant documents for three fusion algo-
rithms

Figure 6.4: Distribution of judged nonrelevant documents for three fusion al-
gorithms
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Figure 6.5: Distribution of unjudged documents for three fusion algorithms

than CombMNZ. The effect of this on MAP will be no different to returning
unjudged documents in similar positions. This does, however, have a detri-
mental effect on the bpref scores probFuse achieves.

In addition to returning fewer relevant documents in early positions in the
fused result sets it produces, Table 6.3 shows that overall, CombMNZ also
displays lower recall. Recall is described in Section 2.3.1. This table shows
the average number of relevant documents contained in the topfiles returned
by each of the three data fusion techniques over each of the five runs. The
“Average Relevant Documents” shows that there was an average of 882.68
judged relevant documents available for retrieval over all the queries that were
used for fusion. The reason this is an average is because the queries used for
fusion varied as the order of the queries was randomised, as only 50% of the
queries were used for fusion. Using 50% of the available queries for training
purposes resulted in 113 queries being used for fusion in each case. This means
that there is an average of only 7.81 judged relevant documents for each query.
This is another issue which can be taken into account when interpreting the
bpref scores attributed to each fusion technique.

For a query with R judged relevant documents, the bpref measure only takes
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Table 6.3: Average number of relevant documents returned
Average Relevant Documents 882.68
probFuseAll 690.84 (78.27%)
probFuseJudged 670.98 (76.01%)
CombMNZ 661.96 (74.99%)

the first R nonrelevant documents returned into account. For example, con-
sider a query that has 8 relevant documents and for which at least 8 nonrele-
vant documents have been returned in the first 20 positions in a result set. In
these circumstances, a relevant document returned in 21st position would have
the same effect on bpref score as a relevant document returned in the 1000th
position or not returned at all. In contrast, the effect of a relevant document
on the MAP score continually declines as its position increases. Under MAP, a
relevant document that is returned in the result set will always be considered
to be preferable to one that is not returned at all.

The tendency of probFuse to return more relevant documents in early positions
also motivates the introduction of the P10 evaluation metric. This measures
the precision of a result set after ten documents have been returned. Previous
research has indicated that these are the positions in which typical users expect
to find relevant documents. One study has found that 85.2% of users examine
only the top 10 documents or fewer [51]. As such, P10 is an important measure
that is particularly suited to the web retrieval task.

The results of the evaluation of probFuse and CombMNZ using the P10 metric
are presented in Table 6.4 and Figure 6.6. From these, it can be seen that both
variations of probFuse achieve higher performance than CombMNZ on all five
runs. In particular, the “second”, “third” and “fifth” runs show a substantial
improvement in the P10 score. As with the MAP and bpref measures, the two
variations of probFuse achieve similar performance to each other. This data
indicates that probFuse performs better at retrieving documents in the positions
most likely to be examined by users of an IR system.

Overall, CombMNZ returned more unjudged documents in early positions in
its fused result sets. This has the effect of allowing judged relevant documents
to be returned later in the result set, without adversely affecting the bpref
score, although it is reflected in the poor MAP scores achieved. The MAP and
P10 measures have rewarded probFuseAll and probFuseJudged for returning rel-
evant documents in early positions. This is particularly important given that
most users do not examine documents outside the top ten results. Although
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Figure 6.6: TREC-2004 P10 scores for t = 50% and x = 25

Table 6.4: TREC-2004 performance of five individual runs for t = 50% and
x = 25 using probFuseAll and probFuseJudged, evaluated with P10

CombMNZ probFuseAll probFuseJudged
first 0.11858 0.13930 (+17.47%) 0.13910 (+17.31%)
second 0.03486 0.12780 (+266.61%) 0.12708 (+264.54%)
third 0.02480 0.11824 (+378.77%) 0.11700 (+371.78%)
fourth 0.10902 0.11292 (+3.58%) 0.11310 (+3.74%)
fifth 0.06038 0.11116 (+84.1%) 0.11046 (+82.94%)
Average 0.06953 0.12188 (+149.71%) 0.12135 (+148.06%)

bpref has not penalised CombMNZ for returning relevant documents further
down the fused result sets, such performance is unlikely to be beneficial in
a real-world situation where the relevance of the top-ranked documents is of
utmost importance.

6.5 Summary

In contrast with the experiments described in Chapters 4 and 5, this chapter
describes an experiment to demonstrate the effect of using predetermined Val-
ues for the training set size and the number of segments into which to divide
each result set. These values were those that were shown to achieve optimal
performance on the TREC-3 and TREC-5 datasets in Chapter 5. The difference
between this experiment and the previous experiments outlined in Chapters 4
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and 5 is that in this case, these values are not optimised for the dataset in ques-
tion, but are taken from other experiments on independent datasets.

In running this experiment, data from the web track of the TREC-2004 confer-
ence was used. As the document collection being queried for the web track
task is far larger than those used for TREC-3 or TREC-5, the relevance judg-
ments for this dataset are far less complete than those for any collection used
in the previous experiments.

The experiment showed that less complete relevance judgements did not cause
probFuseAll and probFuseJudged to perform significantly differently. The MAP
evaluation measure showed both probFuse variants to significantly outperform
CombMNZ. The bpref measure did not show one technique to conclusively
outperform the others. Although the average bpref score for CombMNZ was
higher, it only achieved higher scores in three out of five runs. However, prob-
Fuse was shown to have greater overall recall, and demonstrated a greater ten-
dency to return relevant documents in early positions in its fused result sets.
This latter tendency is reflected in an average improvement in the P10 evalu-
ation measure of over 148%. These facts, combined with the average increase
in MAP score of over 230% justifies the conclusion that probFuse achieves sig-
nificantly superior results to CombMNZ.
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CHAPTER

SEVEN

Conclusions and Future Work

This thesis presents probFuse, a probabilistic approach to the task of data fu-
sion. ProbFuse assumes that the results produced by an IR system on a number
of training queries is indicative of its future performance. Documents in the
fused result set are ranked according to the probability that they are relevant to
the given query. This approach has been shown to achieve promising results
when evaluated on a number of document collections. This chapter proposes a
number of possible directions for future work and summarises the conclusions
drawn as a result of the work presented in this thesis.

7.1 Future Work

All of the experiments presented in this thesis have been run on static test
collections for which relevance judgments are available. These relevance judg-
ments can be used to calculate a document’s probability of relevance. How-
ever, in a large-scale, dynamic IR system (such as one designed to retrieve doc-
uments from the World Wide Web), these relevance judgments are unavailable.
For this reason, it is important to develop an alternative means of constructing
the probability of relevance distribution. The absence of relevance judgments
also makes it difficult to evaluate the performance of the fusion algorithm.

As a possible method of calculating the probability of relevance for document
collections for which relevance judgments are unavailable, it is necessary to in-
vestigate the effects of training probFuse on one document collection and using
this training data to perform fusion on another collection. This is not possible
with the current TREC data, as the systems that have been used as inputs are
not the same for each conference. To date, the only data that has taken from one
collection and applied to experiments run on another are the values for t and
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x that were used for the experiments in Chapter 6. Performing experiments on
this will require result sets for multiple document collections produced by the
same input systems.

The effect of different levels of relevance judgment completeness is another
factor worthy of further investigation. One approach to this would be to vary
the number of relevance judgments available for probFuse’s training phase,
while maintaining the same level of completeness for evaluating the fusion
output.

Result sets taken from TREC submissions are limited to 1000 documents in
length. Constant-length result sets do not commonly occur in web-based IR
systems. Different queries are likely to have different numbers of relevant doc-
uments associated with them. Additionally, IR algorithms will have different
methods of estimating relevance and so they are likely to produce result sets
of different lengths to each other. For this reason, it is important to investigate
the effect of varying the length of the input result sets.

To date, probFuse uses a trained, a priori, probability to weight each input sys-
tem. Other approaches to estimating the probability of relevance may also be
possible, without the necessity of an initial training phase. One approach may
be to build on work done by Manmatha et al. [34], who proposed a method of
mapping the scores attributed to documents by IR systems to probabilities of
relevance. An alternative approach may be to adjust the probabilities associ-
ated with each input system at query time, according to user behaviour.

7.2 Conclusions

The probFuse algorithm is described in Chapter 3. This included the proposal of
two variants of probability calculations, probFuseAll and probFuseJudged. These
allow for the investigation of the effects of using all documents in a result set
for training purposes or using just documents for which relevance judgments
are available. The probFuse algorithm includes two variables: t (the percentage
of available queries to be used for training purposes) and x (the number of
segments into which to divide each result set). Optimal values for these must
be determined empirically.

An exploratory study was initially carried out on a number of small document
collections in order to test the effectiveness of probFuse. This is described in
Chapter 4. These collections were chosen as complete relevance judgements
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are available for them. This means that for every document in the collection, it
is known whether it is relevant or nonrelevant to all the accompanying queries.
This study showed that probFuse outperformed each of the individual inputs
and also outperformed CombMNZ. These results prompted further investiga-
tion of the performance of probFuse on larger document collections.

Progressing from this initial study, Chapter 5 made use of inputs from the
larger TREC-3 and TREC-5 datasets. A feature of these document collections
is that the relevance judgments available are incomplete, meaning that the rel-
evance of many documents is unknown. The aim of these experiments was to
demonstrate that values for t and x could be found that would cause probFuse
to outperform the CombMNZ algorithm on both collections. It was observed
that by using a training set size of 50% and dividing each result set into 25
segments, this goal was achieved.

The final experiment presented in this thesis was to investigate whether it was
possible to use the values for t and x that were found to perform optimally on
the TREC-3 and TREC-5 datasets and use them to perform fusion on a different
set of inputs on a larger document collection. This experiment is described
in Chapter 6. The inputs were taken from the web track of the TREC-2004
conference. This data includes relevance judgments that are far less complete
than any of the datasets that had previously been used. Despite the small
number of available relevance judgments, no significant difference between
the performance of the two variations of the probFuse probability calculation
was observed. However, the difference between the performance of probFuse
and CombMNZ was observed to be substantial. It was shown that:

• probFuse achieved increases of over 230% when evaluated using MAP.

• probFuse achieved greater recall overall, by returning more relevant doc-
uments than CombMNZ

• probFuse showed a greater tendency to return relevant documents in
early positions, which is where users are most likely to look for docu-
ments that satisfy their information need. This is reflected in an average
improvement of over 148% when evaluated using the P10 measure.

The other evaluation measure used, bpref, failed to conclusively show one fu-
sion technique having superior performance over the other. This is discussed
in 6.4.1.
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Overall, probFuse has been shown to outperform CombMNZ on all types of
document collections. This includes small collections such as Cranfield and
LISA, the larger collections from TREC-3 and TREC-5 and also the TREC web
track. As the size of the document collections has increased, the completeness
of the available relevance judgments has declined, without having an adverse
effect on the performance of probFuse.

The results of the web track experiment are particularly promising, as they
show that probFuse has the potential to be applied to large document collec-
tions such as in the web search domain, where it is necessary to infer relevance
and judgments will be extremely incomplete.

Corporate intranets represent a target that will be more achievable in the short
term. These contain far fewer documents than are found on the World Wide
Web and are comparable in size to the larger test collections used in the ex-
periments presented in this thesis. A benefit of this smaller size is that it the
production of relevance judgments becomes far less challenging. Given these
relevance judgments, probFuse has demonstrated that it is capable of achieving
high performance data fusion in situations such as this.
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APPENDIX

A

Inputs to the TREC Fusion
Experiments

This appendix lists the topfiles that were used for the fusion experiments pre-
sented in Chapters 5 and 6. These topfiles were selected at random from all
the available topfiles for the relevant TREC conferences.

Table A.1: Inputs to TREC-3 ad hoc experimental runs

first second third fourth fifth
acqnt1 clartm brkly7 assctv1 assctv2
citri1 crnlla clarta erima1 nyuir1
crnlea dortd2 dortd1 lsia0mf rutfua1
padre2 eth002 eth001 lsia0mw2 rutfua2
xerox3 nyuir2 inq101 virtu1 siems1
xerox4 padre1 pircs1 vtc2s2 westp1

Table A.2: Inputs to TREC-5 ad hoc experimental runs

first second third fourth fifth
brkly18 anu5man4 anu5aut2 DCU962 anu5aut1
DCU963 CLCLUS city96a1 genrl1 colm4
ETHal1 erliA1 CLTHES ibmge1 Cor5A2cr
KUSG3 genrl3 ETHas1 ibms96a LNmFull1
vtwnA1 ibms96b genrl4 KUSG2 LNmFull2
vtwnB1 uwgcx0 ibmgd2 mds003 pircsAAL
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Table A.3: Inputs to the TREC-2004 web track experimental runs

first second third
csiroatnist ICT04CIIS1AT humW04dp
fdwiedf0 MeijiHILw5 humW04dpl
mpi04web01 MU04web1 MSRAmixed1
MSRC04B1S2 MU04web3 MSRAx5
MSRC04B3S MU04web4 MU04web5
MU04web2 uogWebSelAnL uogWebCA

fourth fifth
MeijiHILw1 fdwiellq0
MeijiHILw3 fdwiesl0
MSRAmixed3 humW04pl
THUIRmix043 MeijiHILw2
UAmsT04MWScb mpi04web02
VTOK5 mpi04web08
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APPENDIX

B

Results of Individual Runs on
TREC-3

This appendix shows the results of each of the five fusion runs that were run on
the TREC-3 dataset in Chapter 5. Each figure shows the MAP scores achieved
for each value of x when using a training set size of 50%. The average of the
MAP scores in each of these figures is displayed in Figure 5.1.

Figure B.1: TREC-3 MAP scores for t = 50% for the “first” run
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Figure B.2: TREC-3 MAP scores for t = 50% for the “second” run

Figure B.3: TREC-3 MAP scores for t = 50% for the “third” run
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Figure B.4: TREC-3 MAP scores for t = 50% for the “fourth” run

Figure B.5: TREC-3 MAP scores for t = 50% for the “fifth” run
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APPENDIX

C

Results of Individual Runs on
TREC-5

This appendix shows the results of each of the five fusion runs that were run on
the TREC-5 dataset in Chapter 5. Each figure shows the MAP scores achieved
for each value of x when using a training set size of 50%. The average of the
MAP scores in each of these figures is displayed in Figure 5.2.

Figure C.1: TREC-5 MAP scores for t = 50% for the “first” run
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Figure C.2: TREC-5 MAP scores for t = 50% for the “second” run

Figure C.3: TREC-5 MAP scores for t = 50% for the “third” run
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Figure C.4: TREC-5 MAP scores for t = 50% for the “fourth” run

Figure C.5: TREC-5 MAP scores for t = 50% for the “fifth” run
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