
SoSAA:
A Framework for Integrating Components & Agents

Mauro Dragone
CLARITY: The Centre for
Sensor Web Technologies
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2491
Mauro.Dragone@ucd.ie

David Lillis
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2908

David.Lillis@ucd.ie

Rem Collier
University College Dublin

Belfield, Dublin 4
Ireland

+353 1 716 2465

Rem.Collier@ucd.ie

G.M.P. O’Hare
CLARITY: The Centre for
Sensor Web Technologies

University College Dublin
Belfield, Dublin 4

Ireland
+353 1 716 2472

Gregory.Ohare@ucd.ie

ABSTRACT
Modern computing systems require powerful software frameworks
to ease their development and manage their complexity. These
issues are addressed within both Component-Based Software
Engineering and Agent-Oriented Software Engineering, although
few integrated solutions exist. This paper discusses a novel
integration strategy, which builds upon both paradigms to address
their shortcomings while leveraging their different characteristics
to define a complete software framework.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Frameworks.

General Terms
Design

Keywords
Agent oriented Software Engineering; Component based Software
Engineering; Agent Programming Toolkit, Component
Framework

1. INTRODUCTION
Today’s ubiquitous and pervasive applications are typically open
and dynamic, as the nature and the availability of both their
hardware and software elements are not stable but may change at
run-time. In order to adapt to such environments, modern
applications must exhibit run-time flexibility, such as an ability to
re-organize the interaction patterns of their architectural elements
during execution. These issues are being addressed by both the
Component-Based Software Engineering (CBSE) and Agent-
Oriented Software Engineering (AOSE) paradigms, each offering
a modular design by which to encapsulate, integrate and organize
the different systems functionalities.

CSBE [15] operates by posing clear boundaries between
architectural modules (the components) and guiding the
developers in assembling these components into a system
architecture. Within CBSE, domain analysis captures the principle
quality attributes and expresses them in form of a component
model. This typically provides an unambiguous description of the
different component types: their features and behavioral
properties, and the set of their legitimate mutual relationships.
These are supported by inter-component communication channels.
Such a level of flexibility is deemed essential for implementing

framework-level mechanisms for ensuring that inter-component
dependencies evolve along well-defined and anticipated lines so
as to guarantee the preservation of system-wide quality attributes.

AOSE provides a method of abstraction and system
decomposition based on agentification. This transforms a
software application into an agent, by building a wrapper around
it so it can interoperate with the rest of the system. This results in
component-based systems in which traditional components are
replaced by agents with reasoning capabilities and Agent
Communication Language (ACL) interfaces.

Despite the similarities and commonality of objectives, there is
little actual cross-fertilization between CBSE and AOSE. CBSE
has begun to tackle reasoning about the assembly and integration
of composite systems. In striving to produce self-managing and
adaptable architectures, a formal base is usually required to
describe the provided and required features of individual
components and also important semantic aspects, such as the
correct way those features are to be used. Many of the problems
and solutions being encountered in CBSE resemble those already
addressed in AOSE for multi agent coordination and high-level
negotiations for resource provision.

By drawing on work conducted within the Multi-Agent Systems
(MAS) community, AOSE can utilise dedicated design
methodologies through which analysis and modelling of inter-
agent interaction can be performed. However, the emphasis of
multi agent toolkits in general is in allowing the coordination of
large scale, deliberative MASs, while issues arising from low-
level functionalities are often overlooked. The effort in
standardizing the ACL-level is not matched by similar efforts in
enabling the integration with low-level functionalities. What is
missing is a proper mechanism to allow multiple agents to share a
fine-grained access to a common functional layer without
incurring interference or costly ACL-based coordination. Thus,
AOSE architectures are mostly used as high-level, application
integration frameworks, leaving the developer with the problem of
managing all the agent’s functionalities within each part of the
application. Consequently, in many hard applicative domains,
take up of the AOSE approach is still limited, with a more
traditional component-based approach usually preferred.

This paper presents a step toward the solutions of these problems
that builds on both CBSE and AOSE to leverage on their distinct
characteristics to provide a complete construction process with its
associated software framework. The key focus is on the
interaction between the component and deliberative layers of the

framework, with overviews provided of the other framework
features.

The remainder of this paper is organized in the following manner:
Firstly, Section 2 provides a conceptual overview of our
approach, and also discusses the design rationales of the resulting
framework – the Socially Situated Agent Architecture (SoSAA).
Section 3 describes the implementation of the framework. After
that, Section 4 introduces an example application to illustrate its
capabilities in more detail. Section 5 discusses this work in
relation to related work in both the CBSE and AOSE
communities. Finally, Section 6 summarises our experiences with
the new framework and points to the directions we intend to
explore in our future research.

2. SoSAA Hybrid Framework Strategy
SoSAA is a software framework initially intended to foster and
investigate the use of AOSE for the development of modern robot
systems. In general, the aim of SoSAA’s design is to ease the
development, maintenance and extension of complex applications
that are specified in terms of elements with agreed-upon
responsibilities and interfaces. SoSAA addresses system’s
modularity by drawing from the analogy with hybrid control
architectures for autonomous agents. Popularised for their use in
robotics (e.g. [9]), hybrid control architectures are layered
architectures combining low-level behaviour-based systems [2]
with high-level, deliberative/procedural reasoning apparatus.
From a control perspective, such an arrangement enables
delegating many of the details of the agent’s control to the
behaviour system, where they are undertaken by closely
monitoring the agent’s sensory-motor apparatus, without
employing symbolic reasoning. Although hybridization
approaches vary, the general trend is trying to eliminate the
dominance of some layers over others. In particular, hybrid
architectures try as much as possible to exercise an abstract
control of the objectives pursued by the reactive/behavioural
layer. However, ultimately the latter is never left on its own
device, as the higher layers usually intervene on an event basis to
re-configure its short-term objectives.

The original solution implemented in the SoSAA framework is to
apply such a hybrid integration strategy also to the system’s
infrastructure. Fig. 1 helps illustrating this point. SoSAA
combines a component-based infrastructure framework, with a
MAS-based high-level infrastructure framework. The first can be
used to instantiate different component-based systems and provide
a computational environment to the second, which then augments
its capabilities with its multi-agent organization and goal-oriented
reasoning. To this end, the SoSAA adapter provides meta-level
perceptors and meta-level actuators modules, which collectively
define the interface between the two layers in SoSAA. In
particular, the SoSAA adapter sets the range of the possible
interventions and monitoring capabilities of the intentional layer

by distinguishing between the capabilities of the infrastructure
and those of the application. Crucially, it also allows components
to be accessed by multiple intentional agents, called component
agents, whose specializations can be formalized by defining a
number of roles, covering either application, infrastructure or
cross-level concerns.

Component Framework Interface

Components

Scheduling &
control injection

Events State load configureunload wire

SoSAA Adapter

Component
Agents

SoSAA Intentional Layer

ACL

components' wiringcomponents' interfaces

Figure 1. SoSAA’s hybrid framework strategy.

SoSAA leverages both the component-model of its low-level
infrastructure, and the MAS organization of its intentional layer to
define a complete architectural framework. Simply put, SoSAA
requires wrapping functional skills within low-level components
before they can be administered by component agents in the
SoSAA intentional layer. This enables the adoption of a low-level
component model that can be oriented toward supporting specific
application domains.

SoSAA developers also have flexible control of system
granularity. Given the standardized interface toward low-level
components, it is easy to implement and test different
configurations, for example to tune a particular application or to
adapt to pre-existing contexts. Finally, we also highlight how this
interface is defined in terms of both standard agent capabilities
and common features of component models. As such, SoSAA’s
design facilitates the replacement of different agent platforms and
different component-based frameworks. In addition to easing the
extensibility of the framework, this also enables to create
heterogeneous deployments of SoSAA system, e.g. to adapt to
computational constraints environments.

3. Implementation
The implementation of the SoSAA framework can be summarised
by covering both the CBSE and the AOSE aspects, and their
integration in the SoSAA Adapter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

3.1 Low-level component-based framework
In order to serve as a general-purpose infrastructure framework,
the low-level component framework in SoSAA needs to provide
the following features:

R1) Support for the connection-driven (procedural calls between
clients and service providers), and data-driven (based on
messaging and/or events) component-composition styles.

R2) Brokering, which is used by components to locate suitable
collaboration partners for each of the composition styles
supported by the framework. Thus participating components
are not statically bound at design/compilation time but can
be bound either at composition-time or at run-time.

R3) Container-type functionalities, used to load, unload, activate,
de-activate, configure, and query the set of functional
components loaded in the system, together with their
interface requirements (in terms of provided and required
collaborations).

R4) Binding operations, with which the client-side interfaces
(e.g. service clients, event listeners, data consumers) of one
component can be programmatically bounded to server-side
interfaces (e.g. service providers, event sources, data
producers) of other components.

R5) Support for life-cycle management and scheduling/control-
injection of activity-type components (e.g. encapsulating
processes and threads as in data processing routines, sensor
drivers, and sensory-motor behaviours)

While these requirements cover features that are commonly
agreed within CBSE, SoSAA demands two additional features,
respectively:

R6) Support for priority dispatching of consumable events. This
is required so that an event handler situated in the SoSAA
intentional layer may override handlers registered within the
low-level framework by: (i) registering itself as a prioritized
event handler, and (ii) declaring the event consumed in order
to cancel it from the event bus.

R7) A state repository associated with each component, which is
used by the component agents to collect information about
the state of the component's inner variables, including: the
component’s run-time requirements; other functional
parameters; and the events it raises during its execution. This
information must be translated into first-order predicates in
order to be understood by component agents.

Finally, SoSAA also sets two important non-functional
requirements on any implementation of its low-level component
framework, namely: (i) extensibility to different applicative
domains, and (ii) a clear separation between infrastructure and
application concerns.

Microsoft’s COM+ and Common Language Runtime (CLR) for
the .NET platform, Sun’s Java language, RMI, J2EE platform and
Enterprise JavaBeans (EJB), are all candidate technologies.
However, rather than being component frameworks in their own
right, these constitute component-enabling technologies that can
be used to create domain specific applications. Also, the majority
of these initiatives are biased toward business related domains.
They usually facilitate the design of multi-tier enterprise systems
but provide only limited support for extension and adaptation. A
notable exception in the CBSE area is the Fractal component

model [4]. Specifically, Fractal introduces the notion of a
component endowed with an open set of control capabilities.
These are not fixed in the model but can be extended and adapted
to fit the programmer's constraints and objectives.

A similar approach is adopted in the JMCF (Java Modular
Component Framework). JMFC is organized in a core package,
which describes the framework in the form of a set of domain-
independent interfaces, and in an implementation package. The
latter includes common abstract implementation of the
framework’s basic classes as well as their domain-specific
specializations. Abstract implementations in JMCF define
component types, which capture the various characteristics of the
specific application domain. Component types simplify the
development of applications by providing a set of primitive
components that are ready to be specialized by the developer. The
other purpose of component types in JMCF is to manage the
relationships with framework-type components. These are
components offering system-wide services, such as logging.
scheduling/control-injection, and component repair, that can be
used by the functional components defined at the application
level.

In JMCF, once an application’s components extend a specific
component type, they automatically inherit the framework
mechanisms and the features supported by that component type.
They are then left to declare the component’s name and the Java
interfaces by which the component’s interfaces may be utilised
(e.g. a source or listener event interface, a data consumer or
producer interface, or a service interface).

ROOT CONTEXT

Simple
Component

PARENT COMPONENT WITH INNER CONTEXT

Child-
Component

Child-
Component

components'
interfaces 1 1

1

1

interface binding

State
Repository

State
Repository

State
Repository

Figure 2. Recursive contexts in JMCF

As in Fractal, JMCF supports recursive components’ contexts (see
Fig. 2) to hierarchically organize system components and also to
provide container and brokering functionalities. While a root
context provides the main container, each component can also be
a composite component by providing its own inner context to
organize inter-component functionalities among its children.

Within JMCF, components’ state repository is implemented as an
add-on feature of each component type. Developers of functional
components need only write the translation code for the
information they wish to export to the SoSAA intentional layer.
Finally, the particular implementation of JMCF facilitates the
separation of application-type information, originated in the
functional components, from infrastructure-level information,
originated by the component types and by the framework-type
components.

Consequently, each component’s state repository can be queried
selectively to retrieve either application-level or infrastructure-
level information.

3.2 High-level MAS framework
The high-level framework is implemented using the pre-existing
Agent Factory (AF) framework [5], a cohesive, FIPA standards
compliant framework for building and deploying multi-agent
systems. AF offers an open and extensible set of interfaces that
supports the creation of a diverse range of agent architectures. It
also supports the deployment of platform services, which act as
shared platform-level resources, implemented in Java, that agents
may bind to and use.

For SoSAA, AF is used in tandem with AFAPL [14], a purpose-
built Agent-Oriented Programming language that models agents
as mental entities whose internal state consists of beliefs and
commitments. Informally, beliefs represent the agent's current
state of its environment, while commitments represent the
outcome of an underlying reasoning process through which the
agent selects what activities it should perform. In AFAPL, an
agent has both primitive abilities, in the form of directly
executable actions, and composite abilities, in the form of plans
built from plan operators such as SEQ (sequential execution),
OR/XOR (branching), FOREACH (plan expansion), DO_UNTIL
(loop), and DO_WHEN (conditional). Execution of an AFAPL
program involves the update of the agent's mental state by
repeatedly applying an internal reasoning process that combines:
update of the agents beliefs via perception of the environment
through a set of auxiliary Java components, known as perceptors;
the adoption of new commitments though the evaluation of a set
of commitment rules, which map belief states onto commitments
that should be adopted should that state arise; and the realisation
of commitments by performing actions, which are implemented
through a set of auxiliary Java components, known as actuators.

An additional feature of AFAPL that is leveraged in the
implementation of SoSAA is its support for code reuse through
the introduction of an IMPORT statement that is somewhat
similar to the #include statement of C. This allows developers to
create partial AFAPL programs and reuse them as appropriate.
For SoSAA, this is used to specify a minimal AFAPL program
that contains the core actuators, and perceptors necessary to
manipulate the SoSAA adapter.

3.3 Adapter
The key to our implementation of SoSAA is the adapter layer,
which exposes core functions of the underlying component
framework to the higher-level agent architecture. In our
implementation, this is achieved by encapsulating the JMCF
framework within an AF platform service. As was illustrated in
Fig. 1, once bound to this service, AFAPL agents are able to
interact with the underlying component in certain well-defined
ways:

 Loading / Unloading of components: the ability to create
new / destroy existing primitive and composite components
for deployment within the framework.

 Wiring of components: the ability to bind components to one
another either explicitly or implicitly based on an underlying
wiring algorithm. Similar support exists for removing
existing bindings.

 Configure: the ability of changing components’ parameters,
i.e. functional properties influencing components’ behaviour,
both at loading-time and at run-time.

 Inspecting / Monitoring components: the ability to inspect
part or all of the current component hierarchy; the ability to
query the state of the interface of a specific component; and
the ability to start / stop monitoring the events and / or state
of a component.

AFAPL agents utilize these features of the platform service via a
corresponding set of actuators and perceptors. For example, a
ComponentStatePerceptor is used to harvest the state information
from components that the agent is monitoring and generate a
corresponding set of beliefs; a LoadActuator is provided that
supports the creation of both primitive and composite components
that can be destroyed via a corresponding UnloadActuator; a
BindActuator is used to support the various wiring mechanisms; a
InspectActuator supports the inspection of a component and its
interfaces; and a FocusActuator is provided to allow agents to
specify which components they wish to monitor, i.e. in order to
listen to the events they generate and to observe their state. At the
AFAPL program level, each actuator is associated with one or
more actions. As is highlighted in Fig. 3, another key feature of
our implementation of SoSAA is the creation of an ontology that
specifies a set of terms that represent information about the
component framework. Inferences based on these terms can be
implemented in AFAPL via the specification of belief rules [14].

ONTOLOGY SoSAAOntology {
 // ?ctxId = context id
 // ?cId(n) = component id
 // ?iId(n) = interface id
 // ?cClass = component class
 // ?iClass = component class
 // ?iCategory = [DATA|SERVICE|EVENT]
 // ?iDir = [CLIENT|SERVER]
 PREDICATE active(?cId);
 PREDICATE suspended(?cId);
 PREDICATE focusingOn(?cId, ?type);
 PREDICATE property(?cId, ?prop, ?val);
 PREDICATE created(?cId);
 PREDICATE removed(?cId);
 PREDICATE component(?cId);
 PREDICATE context(?ctxId);
 PREDICATE contains(?ctxId, ?cId);
 PREDICATE interface(?cId, ?iId, ?iClass,
 ?iCategory, ?iDir)
 PREDICATE bound(?cId1, ?iId1, ?cId2, ?iId2)
 PREDICATE failedBinding(?cId, ?iId);

 …
}

// Perceive component’s state information
// (generates beliefs of predicate property)
PERCEPTOR sosaaStateMonitor {
 USES sosaa;
 CLASS sosaa.adapter.ComponentStatePerceptor
}

// load a component of given class into a context
// ?id will be the identifier of the new component
ACTION load(?ctxId, ?class, ?cId) {
 PRECONDITION BELIEF(componentClass(?class)
 POSTCONDITION BELIEF(true)
 USES SoSAAOntology
 CLASS sosaa.adapter.LoadComponentActuator
}

// load a component by assigning a numeric id
ACTION load(?ctxId, ?class)

// remove the component
ACTION remove(?cId) { ... }

// Bind (Explicitly) two interfaces
ACTION bind(?cId1, ?iId1, ?cId2, ?iId2) { ... }

// bind (Implicitly) a client interface (the
// brokering mechanism of the component’s context
// is responsible for finding a compatible
// server-side interface.
ACTION bind(?cId, ?iId) { ... }

// change the value of the component’s property
ACTION configure(?cId, ?prop, ?value) { ... }

// activate the component
ACTION activate(?cId) { ... }

// de-activate the component
ACTION deactivate(?Id) { ... }

// start focusing on the component
ACTION focus(?cId) { ... }

// stop focusing on the component
ACTION unfocus(?cId) { ... }

// inspect the component
ACTION inspect(?cId) { ... }

LOAD_MODULE sosaa sosaa.module.ComponentStore;

Fig. 3. Part of the SoSAA core AFAPL agent program

4. Case Study: Robotics
Today’s robot systems constitute a special class of ubiquitous
applications, whereby the need for dynamic and self-configurable
architectures emerges from the very same requirements for
autonomous operations. Robotics is also revelatory of the
difficulty of AOSE in making an impact in this type of applicative
domains, as the field is clearly dominated by more traditional
object-oriented and component-based frameworks (e.g. [3]). It is a
not a coincidence that robotics also gives a compelling example of
the importance of sub-symbolical inter-component interaction
over symbolic, ACL-based, coordination. Behaviour-based robot
control architectures [2] explicitly rely upon the interaction
between loosely coupled behaviour-producing modules, which
may be easily encapsulated within components in component-
based robot software frameworks. However, while the majority of
these frameworks allow dynamic modification of collaboration
patterns among system components, e.g. through late binding and
reflection mechanisms, those mechanisms have relative
importance at runtime, as once finalized those applications will
generally run in a stable run-time environment. Furthermore, the
same frameworks do not explicitly incorporate generic
mechanisms for context-aware re-configuration of the
architecture. Other than a missed opportunity, this is also a
problem because application-specific solutions violate the
principle of separation of concern and thus crucially result in
poorly transferable systems, both in terms of software re-use and
portability. In contrast, SoSAA offers a complete infrastructure
framework upon which both low-level and high-level
functionalities can be organized and integrated. To illustrate the

kind of organizational and context-aware, goal-oriented, cross-
level and dynamic configuration enabled by SoSAA, Fig. 4 shows
a sketch of a robot navigation system built with SoSAA (the
details of which can be found in [7]).

SoSAA Behaviour Service Interface

outputinput

RangeFusion

Laser Sonar

Behaviour
Coordinator Primitive-1

Primitive-i

...

MotorIR

Battery

Events State load configureunload wire

SoSAA Adapter

User
Interface

Mapper

Planner

EnergyManagerRole:
 ...
- PLAN HandleLowEnergy {
 trigger: LOW-BATTERY
 focus(ranging context)
 unload(?)
 ...
}

SoSAA Intentional Layer

Ranging Context Behaviour Context (BEH)

Ctrl

Ctrl

Figure 4. A robot navigation system built with SoSAA.

The specific low-level component framework includes two
component contexts. The first groups, respectively: (i) a set of
hardware drivers interfacing with range sensors (sonar, laser,
infrared), (ii) a range-fusion component, whose duty is to merge
their individual outputs to produce an overall picture of the
obstacles in the robot’s surrounding, and (iii) a component
reading the robot’s battery level,. The second context groups,
respectively: (i) a set of primitive behaviour-producing
components, and (ii) a component in charge of their coordination,
whose duty is to merge their individual preferences in order to
find the actual velocity control to send to the robot’s actuators.
Both contexts also include a framework-type component in charge
of scheduling & control injection. Fig. 4 also singles out one of
the component agents in the SoSAA intentional layer of this
application. The specific component agent regulates the energy
consumption of the system by triggering a plan (part of which is
shown in Fig. 5) whenever the level of the robot’s onboard
batteries falls below a given threshold. In that eventuality, the
agent stops the robot, unload every range-sensing driver, re-load
and rewire a set of new drivers based on the level of battery
charge, and re-start the behaviour context after setting a velocity
adequate to the refresh rate obtainable with that set.

Noticeably, the HandleLowEnergy plan in Fig. 5 does not enter
into the functional details other than in those exported through the
SoSAA Adapter by the application’s components. As such, the
SoSAA Adapter defines the boundary between the responsibilities
of the two layers in the system’s architectures. Notwithstanding
these limitations, such an approach enables the implementation of
complex strategies that are defined across multiple functional
areas and that account for both computational and functional

requirements. The simple component-based framework is
enriched with the self-configuration capabilities enabled by the
context aware reasoning conducted in the SoSAA intentional
layer. In the example, the component agent in charge of the
ranging context may even contact the robot’s path planner by
notifying the new maximum velocity in order to trigger the re-
computation of the robot’s path. Similarly, the path planner agent
may also ask the interface agent to advise the user in the case the
robot will be late for a pre-arranged rendezvous. By sharing the
knowledge on the functional components constituting the
applicative system, and also on how to affect them through the
SoSAA Adapter, component agents can negotiate at the ACL-
level only to resolve conflicts.

PLAN HandleLowEnergy(?id, ?type)
BODY
 SEQ(
 configure(beh.coordinator, vel, 0), // stop

 focusOn(battery), // monitor batteries

 FOE_EACH(// remove all ranging drivers
 Belief(contains(ranging.drivers, ?c)),
 remove(?c)
),

 //Re-load ranging drivers in order of
 //increasing energy consumption
 DO_UNTIL(!Belief(lowEnergy),
 getNextExpensiveRangeSensorClass(?c),
 DO_WHEN(Belief(nextExpensive(?c)),
 SEQ(load(ranging.drivers, ?c),
 DO_WHEN(Belief(created(?cId),
 bind(?cId,output,RangeFusion, input))))

 …
DO_WHEN(Belief(fail),send(Planner,newVel(?v)))

END

Figure 5. Part of the HandleLowEnergy Plan.

5. Discussion

The RETSINA MAS [10] employs a hybrid method of
communication, separating the coordination of the agents from the
simple flow of data. ACL such as KQML and FIPA-ACL have
been developed so as to be tailored to the needs of agent
coordination: facilitating requests, responses, the flow of
information and bearing higher-level conversations such as
auctions in mind. However, this is not suitable for certain types of
data, for example telemetry data or video. For these, RETSINA
MAS makes use of “backchannels”, which are specifically
designed to cater for the flow of this type of low-level data. These
do not employ ACL, as to do so results in inefficiencies in terms
of greater processing overheads being invoked, without a tangible
benefit being observed. The management of these backchannel
streams is, however, carried out via ACL, with agents
communicating in this way in order to establish and close
channels as necessary.

SoSAA also makes use of such a hybrid communication model.
Individual components can make use of backchannels in order to
share information amongst themselves and to coordinate their own
efforts. This has the effect of reducing the quantity of ACL
communications being generated, as these are reserved for
coordination at the deliberative layer of the agents. RETSINA,
however, is limited solely to coordinating communication, by
negotiating different types of communication for various types of

data. In contrast, SoSAA extends this hybrid approach to a
component-based framework attending both inter-component
communication and components' execution needs.

A component-based approach in the construction of multi agent
systems has been supported by numerous researchers in the past.
This typically considers the components to be simply the building
blocks from which agents are constructed. The interfaces by
which these components may be used are described using a
language such as DAML-S (as in [1]) and an agent composition
service is charged with building agents from the library of re-
usable components that are available. Once assembled, these
components comprise the entirety of the agent. An advantage of
this approach is the ability to take domain-specific issues into
account at the component level. Domain analysis done at the time
components are written allows the types of components, their
interfaces and inter-component rules to be tailored accordingly.
The decisions made on these issues can therefore be separated
from the task of constructing the multi agent system as a whole,
thus simplifying the process.

Although not specific to the agent’s domain, a similar approach to
system construction is adopted in [11], where a Prolog-based
“kernel” is used to construct relationships and facilitate
communication and method invocation between the system
components. This kernel utilises the available descriptions of the
components' interfaces to match up components based on the
services they provide or require. This type of system allows
dynamic rewiring of the system at run-time so as to react to any
exceptions that may occur.

The principal difference in SoSAA is that the capabilities of the
individual components are augmented by the goal-driven
reasoning capabilities of the deliberative layer of the multi agent
system. This allows us to leverage programming languages that
have been developed specifically with deliberative reasoning in
multi agent systems in mind, such as AFAPL or Jason. These can
be used for the higher-level management of components, such as
deciding when it is appropriate to active or deactivate components
according to the needs of the system as a whole. Components are
left to automatically carry out lower-level behaviours, with the
deliberative layer making decisions about when such behaviours
are necessary or desirable in order to satisfy overall system goals.
As such, SoSAA is an original construction methodology, going
beyond the mere composition of components into an agent.

SoSAA also shares some of the motivations of multi agent
systems based on the Agents & Artifacts (A&A) meta-model such
as CARTAGO [13]. These systems are based on activity theory
and operate by using tools or artifacts to cope with the scaling up
of complexity. These artifacts provide a consistent usage interface
by which agents may interact with their environment. These
interactions can take the form of operations that the artifacts may
carry out, or perceptions that are created by the artifacts
monitoring their environment for the benefit of the agents. As
with component-based systems, domain-specific issues are taken
into account at the stage the artifacts are created.

A component-based framework such as SoSAA may also use
components in the same way as artifacts. However, the most
significant difference between the systems is that artifacts are
strictly passive entities. They do not carry out any operations
unless instructed to do so by the deliberate layer of the agent. In

contrast, SoSAA leverages existing well-established research in
the CBSE domain, specifically as it applies to Robotics. Here,
components are not merely passive, but play an essential role in
managing the reactive behaviour of an agent. A component will
react to events according to a particular behaviour until it is
instructed to do otherwise by the agent's deliberative layer.
Additionally, individual components may communicate amongst
one another at the sub-symbolic level using the backchannels
mentioned above. This results in the deliberative layer being free
to concentrate on higher-level reasoning. Additionally,
CARTAGO currently lacks a well-defined ontology to aid agents
in discovering how artifacts may be utilised. In contract, SoSAA
can make use of pre-existing research on Architecture Description
Languages (ADLs) and contract-based Quality of Service
component specification.

6. Conclusions and Future Work
This work described an ongoing effort in combining the strength
of AOSE and CBSE through the SoSAA framework. We believe
the novelty or this work arises from the way we have combined
aspects of other work in the area to provide a cohesive strategy for
integrating component-based and agent-based approaches.

We have discussed general guide-lines for supporting our
integration strategy, and presented one incarnation of SoSAA.
SoSAA and its constituent software systems can be freely
download at http://www.agentfactory.com. Preliminary versions
of the software have been already employed for the construction
of autonomous agent architectures in both simulated [6] and real
(robotic) settings [7]; for the construction of agent-based
ubiquitous systems [8]; and also for the re-factoring of agent-
based applications that did not previously availed of CBSE
principles [12]. In the later applicative context, SoSAA allowed a
clearer separation of concerns between the underlying
functionality and the agent-layer coordination mechanisms. This
has improved the readability of the code base and crucially also
led to more efficient implementations.

In general, the range of these applications displays the flexibility
of the SoSAA framework in supporting the development of both
low-level functions and high-level (e.g. goal directed and context
aware) capabilities. As different people collaborated on the
different applications, it was found that SoSAA eases the design,
the implementation, the maintenance and the extension of
applications that are specified in terms of elements with agreed-
upon responsibilities and interfaces. Once they use the SoSAA
Adapter or conform to the underlying component framework,
developers can focus on exercising their core expertise in the
implementation of the internals of either low-level components or
intentional agents.

While working on different application scenarios has been crucial
in collecting valuable experience and in shaping the current
design, future work is necessary to identify a set of benchmarks in
order to carry out a more formal validation of SoSAA.

7. REFERENCES
[1] Amor, M., Fuentes, L., and Troya, J. M., Putting Together

Web Services and Compositional Software Agents, J.M.
Cueva Lovelle et al. (Eds.): ICWE 2003, LNCS 2722, pp.
44–53, 2003.

[2] Brooks, R. A. (1991) New Approaches to Robotics. Science
(253), September 1991, pp. 1227–1236.

[3] Brooks, A. et al., Towards Component-Based Robotics,
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), August 2-6 2005, Edmonton,
Alberta.

[4] Bruneton, E. T. et al., The Fractal Component Model and
Its Support in Java. Software Practice and Experience,
special issue on Experiences with Auto-adaptive and
Reconfigurable Systems. 36(11-12), 2006.

[5] Collier, R.W. et al., Beyond Prototyping in the Valley of the
Agents, in Multi-Agent Systems and Applications III, Lecture
Notes in Computer Science (LNCS 2691), Springer-Verlag

[6] Dragone, M. , Lillis, D. , Muldoon, C. , Tynan, R., Collier,
R. W., and O'Hare, G. M. P. Dublin Bogtrotters: Agent
Herders, In Post-proceedings of the Sixth international
Workshop on Programming Multi-Agent Systems, ProMAS,
2008.

[7] Dragone, M.: An agent-based robot software framework.
PhD Thesis, Dept. of Computer Science, Univ. College
Dublin, 2007. [online] http://csserver.ucd.ie/~mdragone/
pubs/MauroDragonePhdThesis.pdf.

[8] Dragone, M., Holz, T. and O'Hare, G.M.P. Using Mixed
Reality Agents as Social Interfaces for Robots, In IEEE
International Workshop on Robot and Human Interactive
Communication. ROMAN, 2007.

[9] Gat, E., ATLANTIS: Integrating planning and reacting in a
heterogeneous asynchronous architecture for controlling real-
world mobile robots. In Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92). pp. 809-
815, 1992.

[10] Koes, M., Nourbakhsh, L., and Sycara K., Communication
Efficiency in Multi-agent Systems, In Proceedings of ICRA
2004, Vol. 3, May, 2004, pp. 2129 – 2134, 2004.

[11] Natali, A., Oliva, E., Ricci, A., Viroli, M., A Framework for
Engineering Interactions in Java-based Component Systems.
Electr. Notes Theor. Computer Science. 154(1): 43-6, 2006.

[12] Peng, L, Collier, R., Mur, A., Lillis, D., Toolan, F., and
Dunnion, J., A Self-Configuring Agent-Based Document
Indexing System, in Multi-Agent Systems and Applications
IV, Lecture Notes in Artificial Intelligence (LNAI), Volume
3690, Springer-Verlag

[13] Ricci, A., Piunti, M., Acay, L. D., Bordini, R. H., Hübner, J.
F., Dastani, M., Integrating heterogeneous agent
programming platforms within artifact-based environments.
AAMAS (1) 2008: 225-232.

[14] Ross, R., Collier, R., O’Hare, G.M.P., (2004), AF-APL –
Bridging Principles & Practice in Agent-Oriented
Languages, Programming Multi-Agent Systems, Lecturer
Notes in Artificial Intelligence (LNAI), Volume 3346,
Springer-Verlag.

[15] Szyperski, C., Component Software: Beyond Object–
Oriented Programming. Addison-Wesley, 1999

