MAMS: Multi-Agent MicroServices®

Rem W. Collier
University College Dublin
Dublin, Ireland
rem.collier@ucd.ie

David Lillis
University College Dublin
Dublin, Ireland
david.lillis@ucd.ie

ABSTRACT

This paper explores the intersection between microservices and
Multi-Agent Systems (MAS), introducing the notion of a new ap-
proach to building MAS known as Multi-Agent MicroServices
(MAMS). Our approach is illustrated through a worked example of
a Vickrey Auction implemented as a microservice.

CCS CONCEPTS

« Information systems — RESTful web services; - Comput-
ing methodologies — Multi-agent systems; « Software and
its engineering — Organizing principles for web applications.

KEYWORDS

ACM proceedings, KIgX, text tagging

ACM Reference Format:

Rem W. Collier, Eoin O’Neill, David Lillis, and Gregory M.P. O’'Hare. 2019.
MAMS: Multi-Agent MicroServices. In Companion Proceedings of the 2019
World Wide Web Conference (WWW 19 Companion), May 13-17, 2019, San

Francisco, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3308560.3316509

1 INTRODUCTION

As aresearch field, Multi-Agent Systems (MAS), has existed since
the late 1980s. Since its inception, notions such as loose-coupling,
distribution, reactivity and isolated (local) state have been core
concepts [14, 45]. While the notion of an agent has been widely
researched and a large range of tools and programming languages
developed [1, 3, 38, 40], there has been little real adoption of these
languages and tools within industry [8].

At the same time, industry has evolved through a range of enter-
prise paradigms and models, that have slowly shifted from mono-
lithic centralised systems towards highly-decentralised systems
that increasingly exhibit properties that were once seen as differ-
entiators for MAS. Currently, it is the era of the microservice [20];
a model in which systems are built from small, loosely-coupled

“Produces the permission block, and copyright information

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °19 Companion, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6675-5/19/05.

https://doi.org/10.1145/3308560.3316509

Eoin O’Neill
University College Dublin
Dublin, Ireland
eoin.o-neill. 3@ucdconnect.ie

Gregory M.P. O’Hare
University College Dublin
Dublin, Ireland
gregory.ohare@ucd.ie

services that maintain their own independent state [13]. Collec-
tively, these services are deployed within an ecosystem of tools and
components that facilitate rapid and agile development techniques;
are easy to extend; and support automated management of fault
tolerance and scaling [46].

This paper argues that microservices represent a potential point
of convergence between modern software engineering and MAS.
It adopts the position that an agent can be viewed as a type of mi-
croservice that can be deployed seamlessly within any microservice
ecosystem. From an external perspective, such a microservice would
be indistinguishable from other standard microservices; with all
interaction being directed through a uniform interface. This would
allow the developers of such a service to leverage existing tools
and components to deliver a MAS that is founded upon, and closely
aligned with, industry accepted tools and platforms.

2 FROM MICROSERVICES TO MULTI-AGENT
SYSTEMS

Microservices represent the state of the art for large-scale soft-
ware development. While not a one-size-fits-all solution, they have
clearly demonstrated their potential as a tool for building systems
at scale. We believe that microservices have many similarities with
MAS. In this section, we examine both approaches by exploring
how the principles of microservices relate to MAS and vice-versa.

Microservices [20] are a realisation of the established Service-
Oriented Architecture (SOA) design style [46]. Due to its popularity,
many definitions of microservices pervade the web. In an effort to
be complete, we have picked two. Firstly, we consider the definition
of [13] who argues that the core principles of microservices are:
Bounded Context, Size, and Independence. Secondly, we consider
[46] who argues that one of the basic tenets of microservices is
their adherence to the IDEAL (Isolated state, Distribution, Elasticity,
Automated management and Loose coupling) design principles [15],
a set of guiding principles for the design of all cloud-based software.

Table 1, presents a combined summary of these two definitions
that reflects our attempt to understand how the principles of mi-
croservices relate to MAS. Due to their similarity, Independence
and Loose Coupling have been combined.

Overall, the comparison demonstrates that there are many com-
monalities between these two approaches: isolated state, distribu-
tion, elasticity and loose coupling seem to be equivalent. From
an agent perspective, isolated state and loose coupling arise from
the view of agents as autonomous decision-makers [45] and the

https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509

Table 1: Comparing Microservice principles to MAS

Table 2: Comparing MAS principles to Microservices

Principle ‘ Microservices MAS l Principle Microservices ‘ MAS
Bounded A microservice repre- | Anagent can play a sin- Autonomy Microservices operate | Agents operate with-
Context sents a single piece of | gle or multiple roles in without the direct in- | out the direct interven-
business functionality. | a system. tervention of humans | tion of humans and
Size Microservices should | Size/complexity is not and have some kind of | have some kind of con-
be small enough to | an issue in MAS re- control over their inter- | trol over their actions
ensure maintainability | search and often de- nal state (and actions?). | and internal state.
and extensibility. pends on the target do- Social Ability | Interaction between | Agents interact with
main. microservices is typi- | other agents using
Isolated State | Sharing of state infor- | State is local and pri- cally achieved using | some kind of Agent
mation is minimised | vate to an agent. Thisis messages based on | Communication
across services. often viewed as essen- RESTful APIs and | Language.
tial for an agents auton- HTTP.
omy [ref]. Reactivity Microservices respond | Agents perceive their
Distribution | Services are spread | Agents are logically to incoming HTTP re- | environment and re-
across multiple nodes. | distributed, but it is quests in a timely fash- | spond in a timely fash-
also expected that they ion. ion to changes that oc-
will be spread over cur in it.
multiple nodes. Proactivity Microservices do not | Agents don’t just re-
Elasticity The application is de- | The ability to add/re- take the initiative. spond - they take the
signed to allow addi- | move agents at run- initiative.
tion and removal of | timeisa central feature
required resources at | of MAS.
runtime. To offer an opposing analysis, we consider how well microser-
Automated Management oper- | Management opera- vices conform to agnet concepts. For this, we choose the classic
Management | ations like failure | tions are not central weak notion of agency espoused by Wooldridge and Jennings [45]
handling and scaling | to agents, but are which argues that an agent is any entity that demonstrates auton-
are automated. sometimes considered. omy, social ability, reactivity and proactivity. Table 2 compares how
Loose Systems are decom- | Agents are au- these features apply to both microservices and agents, with the
Coupling posed into loosely cou- | tonomous and MAS definitions taken directly from their paper.
pled sets of highly-| loosely-coupled Microservices seem to meet the autonomy, social ability and reac-
cohesive colocated ser- | problem solvers. tivity principles quite well. The differences revolve mainly around
vices. the fact that agents are situated entities, while microservices are

distribution perspective comes from the view of agents as social
entities [45] that can be considered “...a loosely-coupled network of
problem solvers..” [14]. Elasticity, in terms of the ability to create
or destroy agents at run-time has been a central concept in MAS
research since its inception, for example [32].

The bounded context and size principles seem less consistent.
In our opinion, this is a consequence of how each approach has
emerged. Microservices are a practical response to the limitations of
monolithic applications and the complexity of other service models.
In contrast, MAS is dominated by research and encompasses a
diverse range of approaches. This has resulted in less emphasis
being placed on such issues. Automated management is an area
that has seen some attention in MAS research, often under the
guise of Autonomic Computing [24]. However, such techniques are
rarely considered key in MAS research.

Another key tenet listed by [46] is polyglot programming - the
argument that developers can and should use appropriate program-
ming paradigms (e.g. Java, Python, Matlab) for each microservice.

not. From an MAS perspective, reactivity is closely related to the
agents’ environment. From a Microservices perspective, reactivity
is simply the ability to respond effectively to incoming HTTP Re-
quests. While they are clearly not the same level of complexity, if
we view a microservices environment to be the set of messages it
receives, then clearly it is reactive.

The view of microservices as entities that react just to messages
is one that is being challenged in the context of Web of Things
style applications [7] where things are represented as microser-
vices that expose state and enable remote action [23]. While this
reduces the conceptual gap for autonomy, it is not reflected in re-
activity. This is because microservices principles are concerned
primarily with defining external rather than internal attributes.
As such, microservices do not consider how their internal state is
realised and maintained, just that the state exists, is represented
as a set of resources, and can be accessed/modified though a uni-
form (REST) interface. It is this same consideration that affects the
proactivity principle - microservices principles do not cover proac-
tivity because it is an internal quality. Finally, while social ability
might seem compatible, it is less so when reflecting on the core
objective of each approach: microservices aim to directly expose

(data) resources in a fine grained way, while agents seek to expose
knowledge (state) and capability (action).

3 MULTI-AGENT MICROSERVICES (MAMS)

This section introduces Multi-Agent MicroServices (MAMS), a class of
system that is comprised of Agent-Oriented MicroServices (AOMS),
and Plain-Old MicroServices (POMS). AOMS are microservices that
are built using MAS technologies which are exposed through a
well-defined interface modelled as a set of REpresentational State
Transfer (REST) [16] [17] endpoints Such a system is an essential
step in achieving our longer-term goal of realising Hypermedia
MAS [7] - agent-based systems that are able to discover, consume
and integrate hypermedia services which act as an enabler for
Semantic Web and Linked Data systems [36, 41]

3.1 Agents and Microservices

In this section, we consider the relationship between agents and mi-
croservices. To do this, we first reflect on the relationship between
resources and microservices that is promoted through REST.

Conceptually, REST promotes a view in which all resources are
isolated as distinct services. In practice, resources are often co-
located to minimize the impact of issues such as chattiness [39],
which occurs where resources have been overly decomposed re-
sulting in an abundance of network calls. This relates to the issue
of Bounded Context discussed in section 2. The result of this is that
a single microservice may often play host to multiple resources.

How does this relate to agents? Conceptually, agents are not
just resources; they are complex decision-making entities that rea-
son about their actions. On the other hand, agents rarely work in
isolation, it is a common model that groups of agent work closely
together through some form of collaborative process that is often
realised through message-passing (e.g. auctions). As such, it is clear
that such agents may suffer from similar issues, such as, chatti-
ness. As with resources, it may make sense to co-locate such agents
within a single microservice.

What about the relationship between agents and resources?
Although there is a clear difference between agents and resources,
we adopt a view that an agent is something that can both implement
resources and be exposed as resources. For example, the inbox of an
agent can be exposed as a resource, with other agents being able to
interact with it by sending a POST request to an inbox URL, creating
a new message. Alternatively, an agent could expose aspects of
its internal state as resources. For example, a bidding agent that
participates in an auction could expose its bidding strategy as a
resource through a well-defined URL. External systems would then
be able to update the strategy by sending a PUT request to that
URL, updating the bidding strategy of the agent. In this sense, an
AOMS is a community of autonomous agents that expose a related
set of resources.

In terms of exposing resources, we adopt the view that each
resource is associated with exactly one agent. That said, not every
agent needs to be associated with a resource. This offers an interest-
ing dichotomy: an AOMS consists of a set of agents that are mapped
to resources and a set of agents that are not. In essence, agents that
expose resources form part of the interface of the microservice
and must be externally accessible. All other agents are part of the

implementation detail and so do not require an external interface.
This view offers many parallels with human organisations. For ex-
ample, in a company, sales and customer support staff are engaged
to interact with the public while many other staff are engaged to
implement internal functions necessary to run the company. From
a software perspective, it also correlates nicely with notion of visi-
bility: externally facing agents can be classed as public agents and
all others as private agents.

Building on these notions, we introduce the idea of a class of
AOMS that represents reusable components of larger microser-
vices architectures. These AOMS would provide standarised im-
plementations of common auctions [21, 22] and organisational
structures [11]. The internal mechanics of these implementations
would use agents, but the external interface would be realised as a
set of REST resources, allowing both AOMS and POMS to use them.
We term this approach Organisation as a Service (OaaS).

3.2 Social Ability and MAMS

Social ability is a key requirement of MAS - it represents the impetus
to move away from individual problem solvers towards networks
of collaborative/cooperative problem solvers. Traditionally, interac-
tion has been modelled through the use of Agent Communication
Languages (ACLs) like FIPA-ACL [19]. More recently, the perceived
failures of these ACLs has seen the emergence of new breeds of
ACL, such as the Blindingly Simple Protocol Language (BSPL) [42].
Alternatively, other researchers have argued for other modes of
interaction based on concepts like shared Artifacts [35], which
consider support for interaction to be the responsibility of the en-
vironment. This style of model has been discussed in detail in the
context of adopting the environment as a first class entity in MAS
development [44]. In practice, it has become clear that the adop-
tion of a single approach is often insufficient and many MAS now
promote a hybrid communication strategy that combines both ap-
proaches. This hybrid view fits well with a microservices approach.
As such, we consider a number of complementary modes:

o Interaction through RESTful APIs. One potential model of
multi-agent interaction discussed in Section 3.1 is to expose
the knowledge (state) and capabilities (actions) of an agent
directly as resources. Such a model is potentially appealing
because it would allow any other component to interact
seamlessly and transparently with an AOMS through the
associated RESTful APL In such a model, an agent could
manage virtual resources that are internal abstractions of
the agent’s internal states or the state of the environment
it inhabits. This state is encoded within the agent’s beliefs,
which are maintained through perception. Changes to the
virtual resource through RESTful calls could lead to changes
in the agent’s beliefs and ultimately drive its actions.

o Interaction through shared artifacts. POMS represent resources
that are exposed through well-defined interfaces. This is
somewhat similar to the notion of an artifact as described
in [35]. State updates can be easily achieved through REST
operations. It is precisely this model that we envisaged in
Section 3.1 where we discussed the idea of a bidding strategy
resource being used to allow external systems to update their
bidding strategy for an auction.

o Interaction through high-level communication. AOMS can
represent single or multi-agent systems. Within an AOMS,
each externally accessible (public) agent can be uniquely
identified by a Uniform Resource Identifier (URI). While
we have previously focused on the idea that agents could
expose “virtual resources”, it is also possible to view the inbox
of an agent as a concrete resource, and message passing
as being equivalent to a POST operation applied to that
resource. Such a model could apply to both locally (the view
adopted in this paper) and remotely hosted inboxes [5]. To
be clear, this approach is different to the pure RESTful API
based communication discussed earlier in that it is more
constrained. Specifically, high-level communication refers
to communication based on human models of interation [6]
(e.g. FIPA-ACL [19]).

o Interaction through conversations. As an interesting next step
to exposing an agent’s inbox as a resource, it is possible
to introduce the notion of an agent whose protocols and
conversations are exposed as resources. This could be a par-
ticularly appealing model as it would allow other agents to
understand what protocols an agent knows (possibly includ-
ing semantic descriptions of those protocols). Additionally,
links representing valid responses could be associated with
the messages to direct the flow of the conversation. Such a
model could build on internal conversation managers like
the Agent Conversation Reasoning Engine [30, 31]. For ex-
ample, if agent A initiates a conversation based on the FIPA
Request Protocol with agent B, then A would generate a con-
versation resource (and associated URI) that encapsulates the
conversation. This would make the conversation persistent,
referable and lend itself concepts such as accountability and
normative behaviour [43].

3.3 Leveraging an Industry Strength Tool
Ecology

Microservices has established itself as the leading approach to de-
veloping large scale systems in industry [12]. It is recognised as
a key tool in managing complexity, maintaining agility and im-
proving the effectiveness of the development team [34]. Key to this
success are a suite of tools and components that help to ease the
development and deployment process:

o Containers: Containerisation sits at the forefront of modern
distributed computing, representing a lightweight class of
virtualisation platforms. Containers provide a lightweight
portable run-time while allowing for development, testing
and deployment and the ability to communicate between
containers [37]. Key to their success is the focus on single
applications/services rather than full Operating Systems cou-
pled with libraries of pre-configured images of services that
can be easily downloaded, deployed and tweaked to meet
current needs. The dominant implementation of container
technology is Docker!.

o Container Orchestration: Effective deployment and manage-
ment of containerized systems is a key issue. This has led
to the emergence of orchestration tools that automate the

Thttp://docker.com

management and monitoring of large clusters of containers.
The dominant player in this space is Kubernetes?.

o Infrastructure Services: The effective deployment of microser-
vices requires more than container orchestration. A range
of additional infrastructure services are needed to realise
truly reliable deployments. For example, [25] argues that
a container orchestrator should facilitate scalability, load
balancing, service deployment and discovery, and possibly
service migration. [10] adds concepts such as message se-
curity, service proxies and data storage infrastructures. For
example, when Netflix re-engineered their system to adopt a
microservices approach, they were forced to develop a range
of technologies that previously were not available [29], in-
cluding: a load balancer called “Ribbon”, and a discovery
service called “Eureka”.

o Design Patterns: Increased adoption of microservices had led
to emerging awareness of what works and what does not.
Architectural design patterns have been proposed encoding
this best practice [10], with the most prominent patterns be-
ing: API Gateway, Publish/Subscribe, Circuit Breaker, Proxy
and Load Balancer. Many other patterns are discussed on-
line3. Tt is interesting to note that the API Gateway, Pub/Sub
and Proxy patterns correspond to KQML facilitator patterns
proposed in the early 1990s [18].

4 ILLUSTRATING MAMS

To provide some context for our approach, we have built a pro-
totype based on ASTRA [8, 9], a variation of the AgentSpeak(L)
programming language [4, 38]. ASTRA was used because it offers
a closer integration with Java than many other AOP languages [8]
as it exposes object references to the logical layer of the agent.
This allows the direct representation of relations between those
objects. It also provides a custom event model (part of its module
mechanism) that enables developers to introduce new event types
into the language. These features have proven particularly useful
in the development of this prototype.

In the creation of this prototype, 4 main aims have been achieved:
the provision of a mechanism for implementing a REST interface
to virtual resources managed by an agent; the provision of a mech-
anism that enables agents to interact directly with REST resources;
the exposing of the agents inbox as a REST resource; and the illus-
tration of the MAMS concept.

4.1 Instantiating the MAMS model

Before launching into the technical (and ASTRA) specific details of
our prototype implementation, we start with some more general
refinements that could be applied to any prototype implementation.
Specifically, we make the following assumptions:

e Asis normal practice, it is assumed that each microservice
will run in a separate Java Virtual Machine hosting a single
HTTP server. In this way, each microservice instance can be
referenced by the hosts name and the port number through
which the HTTP server is exposed.

Zhttps://kubernetes.io/
Shttp://microservices.io

http://docker.com
https://kubernetes.io/
http://microservices.io

e Each public agent will register with and be exposed by this
web server. The agent will be treated as a resource and asso-
ciated with a globally unique URL of the form:
http://<host:port>/<agent-name>

In our view the agent should not be directly addressable as a
REST resource. By this, we mean that you cannot perform HTTP
operations on the agent directly. Instead, we argue that an agent is
a container for resources and its URL should act as a base for the
creation of resource-specific URLs. In our implementation, these
will be either the agent’s inbox or other virtual resources associated
with the agent:

e Each public agent inbox will be exposed through a URI:
http://<host:port>/<agent-name>/inbox

e Virtual resources associated with an agent will be exposed
using URLs based on that agents base URL:
http://<host:port>/<agent-name>/<resource-path>

A possible future step would be to consider how additional as-
pects of an agent could be exposed. For example a /beliefs URI
could return a representation of the agents beliefs. More interest-
ingly, this URI could return the public beliefs of the agent allowing
an agent to share some of its beliefs with other agents while hiding
others. The same could be applied to goals or intentions enabling
agents to reason about each others beliefs and activities.

It is worth noting that the URL of an agent is, by definition,
globally unique. In our view, this is a simple and elegant solution
to the issue of ensuring uniqueness of agent names. The way it is
used to expose the agents inbox also contrasts with the approach
advocated in the FIPA standards [19], where messages are posted
to a URL that represents the agent communication channel (ACC)
for the platform which, in turn, is responsible for delivering the
message to the agent. This has a downside, in that the agent is
potentially less mobile (because its identity is bound to a specific
URL), however these problems are well understood on the web,
and existing mechanisms such as URL redirection could be used to
alleviate such shortcomings.

4.2 Extending ASTRA for AOMS

To illustrate some aspects of our proposed approach, we have
adapted the ASTRA programming language to support the cre-
ation of virtual resources and FIPA-ACL based communication via
RESTful inboxes. This was achieved through the use of ASTRA
modules - Java classes that allow the developer to create custom
actions, terms, formulae, sensors, and events [?] through annotated
methods. Specifically, we developed a Http module that provides
an interface to a Java Web Server implemented using Netty*; a
non-blocking IO library.

The Web Server is implemented using the singleton pattern
enforcing the 1 server per Java Virtual Machine (JVM) policy. The
Http module includes two actions to allow creation of the singleton
on either a default port (9000) or a user-specified port. An additional
action is provided that enables agents to register with the Web
Server. This exposes the agent as was defined in Section 4.1.

As was described in the previous section, valid REST resource
URLs include the inbox URL or the URL of any virtual resource

4http://netty.io

associated with the public agents. Incoming HTTP requests are
handled in one of 2 ways:

o For requests targeted at an agent’s inbox, a custom piece of
code is executed that transforms the body of the incoming
request into a FIPA-ACL message that is passed directly to
the relevant agent. This only occurs if the HTTP request is
a POST request and a 200 OK response is returned. All other
HTTP verbs result in a 403 Forbidden response. To send mes-
sages, we implement a custom ASTRA Message Service. This
is a component of ASTRA that is used to implement bespoke
messaging infrastructures. Specifically, this component is
used to implement a mechanism that transforms a FIPA-ACL
message into a JSON payload that is send as a HTTP POST
to a specified URL (another agent’s inbox).

e For all other requests, a custom Http event is generated.
Event types currently exist for only four HTTP verbs: POST,
GET, PUT, DELETE. However, it is trivial to extend this to
cover all relevant HTTP verbs. The custom Http events con-
tain 3 parameters. Two are references to Java objects that
represent the incoming request and a context that can be
used to generate the HTTP response. The third parameter
is a (logical) list of strings that represent the remaining seg-
ments of URL associated with the HTTP request that is being
handled. These are the segments that come after the part of
the URL that equates to the agent’s name. We illustrate how
custom events are used in Section 3.3.

4.3 Vickrey Auction as a Service

To illustrate our approach, we implement a Vickrey Auction as a
Service that can be used by other microservices. A high-level view
of the service can be seen in Figure 1. The implementation consists
of three types of agent: a Manager agent, Auctioneer agents, and
Bidder agents. A single manager is created (with name “manager”).
It is responsible for managing two virtual resources:

e /manager/items: a resource that represents all items being
sold using the service. External services wishing to use the
auction service submit POST requests to this URI containing
details of items to be sold. Currently, the item model includes
a name, a quantity and a reserve price (that must be reached
for the item to be sold). The manager agent assigns a unique
id to each incoming request. The /items/{id} URL can be
used to access the item once it has been created.

e /manager/clients: a resource that represents all services
that are interested in participating in auctions run through
the service. Upon registration, a bidder is created for each
client microservice. This bidder is the advocate that acts on
behalf of the client service. Interaction between the client
and the bidder is mediated via a /wanted resource through
which the client can indicate what items it is interested in
and what its bidding strategy should be for each item (e.g.
how many items, and how much to pay per item).

To more clearly illustrate how the service works, we will walk
through an example sequence of interactions. First we explore how
a client microservice (named “MS1”) would interact with the auction
service. The key steps are illustrated through the arcs labelled 1-5
in Figure 1:

http://netty.io

POST /items

Return
Result

Notify
Interest

{2applesy _» /items /clients

\
e Link to <bidder-name>/wanted

Manager

e POST /clients

Creates ! POST /wanted
Bidder(s) i {apples / 2 euro each}

Interested
"apples”

~ Bidder(s)

| Auctioneer
! (2apples) Vickrey

——— /wanted

Auction

MAMS Vickrey Auction Service -~ '

Figure 1: Illustration of the Vickrey Auction as a Service

1: MS1 submits a POST request to /manager/clients regis-

tering its interest in using the service.

e 2: The manager verifies MS1, assigns it a unique id and
creates a bidder agent matched to that id.

o 3: The manager responds to the initial POST with a 200 OK re-
sponse and the URL of the <bidder-name>/wanted resource
that has been created specifically for MS1.

e 4: MS1 submits a post request to the /wanted/ resource
indicating that it wants to purchase 2 apples and is willing
to pay 2 euro per apple.

e 5: MS1’s bidder agent registers its interest in auctions of

apples with the manager agent.

At this point, an agent has been created to act on behalf of MS1
and it has been assigned the task of buying 2 apples. No further
action will take place until another microservice (MS2) decides to
sell some apples. To understand the process undertaken by MS2,
we will explain the key steps labeled A-F in figure 1:

e A: MS2 submits a POST request to /manager/items provid-
ing details of a type of item it wished to sell (in this case
2 apples). The manager responds immediately with a 200
OK and a link to the item created (through which MS2 can
monitor the sales process).

e B: At some later point in time, the manager starts the auction
process for the item by creating an Auctioneer agent. Tthe
delay could be due to a limit on the number of concurrent
auctions permitted on the platform, or simply because no
other services are currently interested in the item being sold.

e C: Once the Auctioneer agent is created, the manager in-
forms all interested bidders that an auction is about to start.

o D: Bidder agents decide whether or not to participate. Those
that wish to inform the Auctioneer of their interest.

e E: The Auctioneer executes a standard Vickrey Auction be-
tween all interested bidder agents.

o F Details of the winning bid are returned to the manager
who updates the item record to reflect the outcome and the
winning Microservice is notified of their success.

Figure 2 contains a snippet of ASTRA code that relates to steps
B and C above. It implements a simplified solution: the manager

agent does not consider whether there are interested agents, but
instead creates an auctioneer agent and tells all interested agents
about it (if there are no interested agents, then it tells nobody). It
executes auctions sequentially. The auctioneer waits 5 seconds to
allow interested agents to register their intention to bid, and then
starts the auction, in which it waits for a further 10 seconds before
assessing all received bids. The highest bid (if one exists) is accepted
and the items are sold to the associated microservice.

To deploy our MAMS implementation, it was necessary to make
a number of significant changes to the way that ASTRA is compiled
and deployed. Traditionally, ASTRA has been supported through a
custom Eclipse plugin that integrates with the standard Eclipse build
process. This has proven an effective way of allowing developers to
write and execute ASTRA programs. However, this build process is
not well suited to microservices-based approaches which tend to
follow the Continuous Integration/Continuous Delivery (CI/CD)
model. To remedy this, we have restructured ASTRA into a set
of Maven® artifacts. Further, we have re-engineered the ASTRA
Compiler to work as part of a Maven Plugin that can be easily
integrated into its build lifecycle. Making these changes has allowed
us to follow industry best practice to automate the build process and
support the automatic creation and deployment of MAMS services.
Specifically, we have created a Docker image of our auction system
that can be deployed as required.

While the above service is quite simple, we believe that it demon-
strates a number of interesting properties:

e We have built and deployed a MAMS that can be used seam-
lessly by other microservices. This can be easily extended
to include external agents through the use of FIPA-ACL and
public inboxes.

o By using the MAMS approach, we have implemented a Vick-
rey Auction that is self-contained and reusable. Other auc-
tions or organisational mechanisms can be implemented in
the same way to provide a library of reusable solutions.

o MAMS exposes only the agents/resources that need to inter-
act with external systems. As a result, the Auctioneer, which
implements the auction protocol (and decides the winner)

Shttp://maven.apache.org

http://maven.apache.org

agent Manager {

rule $http.post(ChannelHandlerContext ctx,
FullHttpRequest req, ["items"],
string bdy) {
Item item = il.itemFromJson(bdy);
il.storeltem(item, string id);

IMauctionItem(id, il.getItemName(item));

ResponseObject obj = http.createResponse();
http.setStatus(obj, 200);
http.setLocation(obj,
http.myAddress()+"/items/"+id);
http.sendResponse(ctx, req, obj);

synchronized rule +!auctionItem(string id,
string item) {
lauctioneer("auctioneer"+id, item);
foreach (interest(string name, item)) {
send(inform, name,
available(item, "auctioneer"+id));

Figure 2: ASTRA code implementing sequential auctions

is an internal (private) agent. We believe that this offers a
more secure solution because it is not possible for agents
or microservices (other than the manager and bidders) to
interact directly with the Auctioneer.

5 RELATED WORK

Agents and microservices are garnering increased interest within
the research community. For example, [26] present a case study
in which agents are combined with microservices to implement
rule-based eCommerce applications for IoT. The agent aspect of the
approach is implemented using EMERALD [27]: a knowledge-based
framework built on top of JADE [1].

[28] proposes a collaborative microservices-based model for IoT
systems. In their paper, the authors argue, as we do, that microser-
vices can be viewed as being similar to multi-agent systems. How-
ever, their approach is more of a design perspective than an imple-
mentation strategy and they do not propose the use an concrete
agent technologies as we have done in this paper.

[43] offers a view of decentralized multi-agent systems for IoT
where agents act as the head of a distributed body consisting of mul-
tiple hetereogenous IoT devices. In this paper, sharing of resources
(devices) is realised through a normative interaction model that
applies positive and negative sanctions in response to interaction.
While superficially similar, our approach is really quite different -
it does not require agents to act as the head of a service, instead,

services and agents are seen as equal partners that are allowed
to inter-operate freely as needed by the application. This, when
combined with the layered model preferred for REST promotes a
view of application that are comprised of a combination of agent
based and non-agent based services.

[2] argues for the creation of stateful cloud-native microser-
vices using Akka and Kubernetes. The report clearly highlights
the importance of container and container orchestration technolo-
gies to modern distributed systems development. This view is one
presented by a leading proponent of the Reactive Services/Akka
movement. Their clear message is that for technology to be used it
industry, it must fit the industry models and views. This paper is
our attempt to present that view for MAS technologies.

6 CONCLUSIONS

In this paper, we have argued that adopting a Multi-Agent Mi-
croServices (MAMS) approach offers the potential to deliver truly
decentralized multi-agent applications. The specific approach we
have used to demonstrate MAMS, described in section 4, is not an
attempt to offer a technological solution but instead a vehicle for
understanding what a MAMS system may look like and how it may
operate. For this reason, we have not attempted to formalization
MAMS but instead have followed a more discursive approach.

We conclude by reflecting on the implications of our approach.
From a MAS perspective, we believe that some of the main benefits
/ implications include:

e The embracing of Web models to provide a simple decen-
tralized global unique naming system for agents can act as a
basis for driving new decentralized approaches to building
MAS. For example, exposing aspects of an agents state and
permitting other agents to reason about that state or pro-
viding discoverable semantic descriptions that can be used
to allow agents to reason about how to interact with one
another.

The decomposition of agent systems into self-contained sub-
systems that can be independently tested has the potential
to improve reliability and promotes the creation of reusable
libraries of agents [33].

The alignment of MAS deployment with industry best prac-
tice allows us to leverage the vibrant ecosystem of industry
standard tools and components available to microservices
based systems and where appropriate adapt them for use
with MAS.

From a microservices perspective, we believe that the main ben-
efit is that MAMS enables the seamless integration of agent tech-
nology into microservices-based systems. For example, the Organi-
zation as a Service (OaaS) model proposed in section 3.1 argues for
the creation of shrink-wrapped implementations of various organi-
zational structures that can be used by traditional microservices as
mechanisms for mediating access to one another. This can range
from implementations of auctions such as the one demonstrated in
4 to fully fledged network or market patterns [11].

ACKNOWLEDGMENTS

This research is funded under the SFI Strategic Partnerships Pro-
gramme (16/SPP/3296) and is co-funded by Origin Enterprises Plc

REFERENCES

[1] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. 1999. JADE 4AS A

[10

[11

[12

[13

[14

[15
[16

[17

[22

[23

]

]

FIPA-compliant Agent Framework. Fourth International Conference on Practical
Application of Intelligent Agents and Multi-Agent Technology (PAAM 1999) (1999),
97-108. https://doi.org/10.1145/375735.376120

Jonas Boner. 2019. How To Build Stateful , Cloud-Native Services With Akka
And Kubernetes Tips for running your stateful services as if they are stateless by
Jonas Bonér. (2019). https://www.lightbend.com/white-papers-and-reports
Rafael H Bordini, Lars Braubach, Jorge] Gomez-sanz, Gregory O Hare, Alexander
Pokahr, and Alessandro Ricci. 2006. A Survey of Programming Languages and
Platforms for Multi-Agent Systems. 30 (2006), 33-44.

Rafael H Bordini, Jomi F Hiibner, and Renata Vieira. 2005. {Jason} and the
Golden Fleece of Agent-Oriented Programming. Multi-Agent Programming —
Languages, Platforms and Applications 15 (2005), 3-37. https://doi.org/10.1007/
0-387-26350-0_1

Jean Paul Calbimonte, Davide Calvaresi, and Michael Schumacher. 2018. Multi-
agent interactions on the web through linked data notifications. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-01713-2_4
B Chaib-Draa, A Ken, J Williams, C Hall, and R Kent. 1994. Distributed artificial
intelligence: An overview. Encyclopedia Of Computer Science And Technology 31
(1994), 215-243.

Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. 2018. Engineering World-
Wide Multi-Agent Systems with Hypermedia. In 6th International Workshop
on Engineering Multi-Agent Systems (EMAS). http://www.fipa.org/repository/
standardspecs.html,

RW. Collier, S. Russell, and D. Lillis. 2015. Reflecting on agent programming with
agentspeak(L). Vol. 9387. https://doi.org/10.1007/978-3-319-25524-8_22

A. Dhaon and R. Collier. 2014. Multiple inheritance in AgentSpeak(L)-style
programming languages. In AGERE! 2014 - Proceedings of the 2014 ACM SIGPLAN
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
Part of SPLASH 2014. https://doi.org/10.1145/2687357.2687362

Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. 2017. Research on
Architecting Microservices: Trends, Focus, and Potential for Industrial Adoption.
Proceedings - 2017 IEEE International Conference on Software Architecture, ICSA
2017 (2017), 21-30. https://doi.org/10.1109/ICSA.2017.24

Virginia Dignum and Frank Dignum. 2001. Modelling Agent Societies: Co-
ordination Frameworks and Institutions. Progress in Artificial Intelligence
2258 (2001), 7-21. https://doi.org/10.1007/3-540-45329-6_21 arXiv:arXiv:hep-
th/0112055v2

Nicola Dragoni, Saverio Giallorenzo, Alberto Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, Larisa Safina, Nicola Dragoni, Saverio Giallorenzo,
Alberto Lafuente, Manuel Mazzara, Fabrizio Montesi, Manuel Mazzara, and
Bertrand Meyer Present. 2017. Microservices : yesterday , today , and tomorrow.
Present and Ulterior Software Engineering (2017).

Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. 2018. Microservices: How to make your application
scale. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.
1007/978-3-319-74313-4_8 arXiv:1702.07149

Lesser V.R. Durfee, E.H. 1988. Incremental Planning to Control Time-Constrained
Blackboard-Based Problem Solver. IEEE TRANSACTIONS ON AEROSPACE AND
ELECTRONIC SYSTEMS 24, 5 (1988).

Christoph Fehling. 2015. Cloud Computing Patterns Identification, Design, and
Application. Technical Report.

Roy T Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. Dissertation. University of California, Irvine.

Roy T Fielding and Richard N Taylor. 2002. Principled Design of the Modern
Web Architecture. ACM Transactions on Internet Technology 2, 2 (2002).

Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. 1994. KQML
as an agent communication language. Proceedings of the third international
conference on Information and knowledge management - CIKM *94 (1994), 456-463.
https://doi.org/10.1145/191246.191322

FIPA. 2000. FIPA Standards. http://www.fipa.org

Martin Fowler. 2014. MicroServices: A definition of this new architectural term.
https://martinfowler.com/articles/microservices.html

R Guttman and P Maes. 1998. Cooperative Information Agents I, Learning,
Mobility and Electronic Commerce for Information Discovery on the Internet,
Second International Workshop, CIA’ 98, Paris, France, July 4-7, 1998, Proceedings.
Cia 1435 (1998), 135-147. https://doi.org/10.1007/BFb0053669

Fu Shiung Hsieh. 2006. Analysis of contract net in multi-agent systems. Auto-
matica 42, 5 (2006), 733-740. https://doi.org/10.1016/j.automatica.2005.12.002
Muhammad Aslam Jarwar, Sajjad Ali, Muhammad Golam Kibria, Sunil Kumar,
and Ilyoung Chong. 2017. Exploiting interoperable microservices in web objects
enabled Internet of Things. In International Conference on Ubiquitous and Future
Networks, ICUFN. https://doi.org/10.1109/ICUFN.2017.7993746

[24]

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

&
2

[37

[38

[39]

[40

(41

[42

[43

[44

[45

[46

Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing.
Computer 1 (2003), 41-50.

Nane Kratzke. 2014. A lightweight virtualization cluster reference architecture
derived from open source paas platforms. Open Journal of Mobile Computing and
Cloud Computing 1, 2 (2014), 17-30.

Kalliopi Kravari and Nick Bassiliades. 2018. A Rule-Based eCommerce Method-
ology for the IoT Using Trustworthy Intelligent Agents and Microservices.
https://doi.org/10.1007/978-3-319-99906-7_22

Kalliopi Kravari, Efstratios Kontopoulos, and Nick Bassiliades. 2010. EMERALD:
A multi-agent system for knowledge-based reasoning interoperability in the
semantic web. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6040 LNAI
(2010), 173-182. https://doi.org/10.1007/978-3-642-12842-4_21

Petar Krivic, Pavle Skocir, Mario Kusek, and Gordan Jezic. 2018. Microservices
as agents in IoT systems. In Smart Innovation, Systems and Technologies. https:
//doi.org/10.1007/978-3-319-59394-4_3 arXiv:arXiv:1607.08131v1

Andrew Leung, Andrew Spyker, and Tim Bozarth. 2017. Titus: Introducing
Containers to the Netflix Cloud. Queue 15, 5 (2017), 30.

David Lillis. 2012. Internalising Interaction Protocols as First-Class Programming
Elements in Multi Agent Systems. Ph.D. Dissertation. University College Dublin.
https://doi.org/10.13140/RG.2.1.1573.7040/2

David Lillis, Rem W. Collier, and Howell R. Jordan. 2013. Evaluation of a Con-
versation Management Toolkit for Multi Agent Programming. In Program-
ming Multi-Agent Systems - 10th International Workshop, ProMAS 2012, Valen-
cia, Spain, June 5, 2012, Revised Selected Papers, Mehdi Dastani, Jomi F. Hiib-
ner, and Brian Logan (Eds.). Vol. 7837. Springer Verlag Heidelberg, 90-107.
https://doi.org/10.1007/978-3-642-38700-5_6

David Lillis, Rem W. Collier, Fergus Toolan, and John Dunnion. 2007. Evaluating
Communication Strategies in a Multi Agent Information Retrieval System. In
Proceedings of the 5th European Workshop on Multi-Agent Systems (EUMAS ’07).
Hammamet, Tunisia.

Michael Luck, Peter McBurney, and Chris Preist. 2003. Agent technology: enabling
next generation computing (a roadmap for agent based computing). AgentLink.
Ekaterina Novoseltseva. 2019. Benefits of Microservices Ar-
chitecture Implementation. https://dzone.com/articles/
benefits-amp- examples- of-microservices-architectur

Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and
Luca Tummolini. 2004. Coordination Artifacts: Environment-based Coordination
for Intelligent Agents. International Joint Conference on Autonomous Agents and
Multiagent Systems 2004) (2004), 286-293. https://doi.org/10.1109/AAMAS.2004.
10070

Kevin R Page, David C De Roure, and Kirk Martinez. 2011. REST and Linked
Data: a match made for domain driven development?. In Proceedings of the Second
International Workshop on RESTful Design.

Claus Pahl and Brian Lee. 2015. Containers and clusters for edge cloud
architectures—A technology review. In Future Internet of Things and Cloud (Fi-
Cloud), 2015 3rd International Conference on. IEEE, 379-386.

A. Ricci, RH. Bordini, J.F. Hubner, and R. W. Collier. 2018. AgentSpeak (ER):
An Extension of AgentSpeak (L) improving Encapsulation and Reasoning about
Goals. Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (2018).

Mark Richards. 2015. Microservices vs. service-oriented architecture. O’Reilly
Media.

S. Russell, H. Jordan, G.M.P. O’Hare, and RW. Collier. 2011. Agent factory: A
framework for prototyping logic-based AOP languages. Vol. 6973 LNAL https:
//doi.org/10.1007/978-3-642-24603-6_13

Ivan Salvadori, Alexis Huf, Ronaldo dos Santos Mello, and Frank Siqueira. 2016.
Publishing linked data through semantic microservices composition. Proceedings
of the 18th International Conference on Information Integration and Web-based
Applications and Services - iiWAS ’16 November 2017 (2016), 443-452. https:
//doi.org/10.1145/3011141.3011155

Munindar P. Singh. 2014. Bliss: Specifying declarative service protocols. In
Proceedings - 2014 IEEE International Conference on Services Computing, SCC 2014.
https://doi.org/10.1109/SCC.2014.39

Munindar P Singh and Amit K Chopra. 2017. The internet of things and multiagent
systems: Decentralized intelligence in distributed computing. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 1738—
1747.

Danny Weyns, Andrea Omicini, and James Odell. 2007. Environment as a first
class abstraction in multiagent systems. Autonomous Agents and Multi-Agent
Systems 14, 1 (2007), 5-30. https://doi.org/10.1007/s10458-006-0012-0

Michael Wooldridge and Jennings Nicholas R. 1995. Intelligent Agents: Theory
and Practice. Knowledge Engineering Review 10, 2 (1995).

Olaf Zimmermann. 2017. Microservices tenets: Agile approach to service devel-
opment and deployment. Computer Science - Research and Development (2017).
https://doi.org/10.1007/s00450-016-0337-0

https://doi.org/10.1145/375735.376120
https://www.lightbend.com/white-papers-and-reports
https://doi.org/10.1007/0-387-26350-0_1
https://doi.org/10.1007/0-387-26350-0_1
https://doi.org/10.1007/978-3-030-01713-2_4
http://www.fipa.org/repository/standardspecs.html,
http://www.fipa.org/repository/standardspecs.html,
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1145/2687357.2687362
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1007/3-540-45329-6_21
http://arxiv.org/abs/arXiv:hep-th/0112055v2
http://arxiv.org/abs/arXiv:hep-th/0112055v2
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
http://arxiv.org/abs/1702.07149
https://doi.org/10.1145/191246.191322
http://www.fipa.org
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/BFb0053669
https://doi.org/10.1016/j.automatica.2005.12.002
https://doi.org/10.1109/ICUFN.2017.7993746
https://doi.org/10.1007/978-3-319-99906-7_22
https://doi.org/10.1007/978-3-642-12842-4_21
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-319-59394-4_3
http://arxiv.org/abs/arXiv:1607.08131v1
https://doi.org/10.13140/RG.2.1.1573.7040/2
https://doi.org/10.1007/978-3-642-38700-5_6
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://dzone.com/articles/benefits-amp-examples-of-microservices-architectur
https://doi.org/10.1109/AAMAS.2004.10070
https://doi.org/10.1109/AAMAS.2004.10070
https://doi.org/10.1007/978-3-642-24603-6_13
https://doi.org/10.1007/978-3-642-24603-6_13
https://doi.org/10.1145/3011141.3011155
https://doi.org/10.1145/3011141.3011155
https://doi.org/10.1109/SCC.2014.39
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s00450-016-0337-0

	Abstract
	1 Introduction
	2 From Microservices to Multi-Agent Systems
	3 Multi-Agent MicroServices (MAMS)
	3.1 Agents and Microservices
	3.2 Social Ability and MAMS
	3.3 Leveraging an Industry Strength Tool Ecology

	4 Illustrating MAMS
	4.1 Instantiating the MAMS model
	4.2 Extending ASTRA for AOMS
	4.3 Vickrey Auction as a Service

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

